000972118 001__ 972118
000972118 005__ 20240712113152.0
000972118 0247_ $$2doi$$a10.1021/acs.jctc.2c00799
000972118 0247_ $$2ISSN$$a1549-9618
000972118 0247_ $$2ISSN$$a1549-9626
000972118 0247_ $$2Handle$$a2128/34391
000972118 0247_ $$2pmid$$a36651849
000972118 0247_ $$2WOS$$aWOS:000920332400001
000972118 037__ $$aFZJ-2023-01080
000972118 082__ $$a610
000972118 1001_ $$0P:(DE-Juel1)192568$$aHuang, Jun$$b0$$eCorresponding author$$ufzj
000972118 245__ $$aDensity-Potential Functional Theory of Electrochemical Double Layers: Calibration on the Ag(111)-KPF 6 System and Parametric Analysis
000972118 260__ $$aWashington, DC$$c2023
000972118 3367_ $$2DRIVER$$aarticle
000972118 3367_ $$2DataCite$$aOutput Types/Journal article
000972118 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707830429_14049
000972118 3367_ $$2BibTeX$$aARTICLE
000972118 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000972118 3367_ $$00$$2EndNote$$aJournal Article
000972118 520__ $$aThe density-potential functional theory (DPFT) of electrochemical double layer (EDL) is upgraded by adopting (generalized) gradient approximations for kinetic, exchange, and correlation functionals of metal electrons. A new numerical scheme that is more stable and converges faster is proposed to solve the DPFT model. The DPFT model is calibrated with existing differential double-layer capacitance (Cdl) data of the EDL at Ag(111)-KPF6 aqueous interface at five concentrations at room temperature. Metal electronic effects are essential to explain why the two peaks of the camel-shaped Cdl curves are almost symmetric in spite of the size difference of the hydrated cations and anions. A systematic parametric analysis is then conducted in terms of key EDL properties, including the potential of zero charge and the differential capacitance. The parametric analysis, on the one hand, elucidates how quantum mechanical behaviors of metal electrons as well as interactions between metal electrons and the electrolyte solution impact the EDL properties and, on the other hand, identifies key parameters of the DPFT model, which should be calibrated using first-principles calculations and/or advanced experiments in the future.
000972118 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000972118 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x1
000972118 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x2
000972118 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000972118 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.2c00799$$gp. acs.jctc.2c00799$$n3$$p1003–1013$$tJournal of chemical theory and computation$$v19$$x1549-9618$$y2023
000972118 8564_ $$uhttps://juser.fz-juelich.de/record/972118/files/acs.jctc.2c00799.pdf$$yOpenAccess
000972118 8767_ $$d2023-02-01$$eHybrid-OA$$jPublish and Read$$zACS
000972118 909CO $$ooai:juser.fz-juelich.de:972118$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000972118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192568$$aForschungszentrum Jülich$$b0$$kFZJ
000972118 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000972118 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x1
000972118 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x2
000972118 9141_ $$y2023
000972118 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000972118 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000972118 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
000972118 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000972118 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
000972118 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000972118 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-20
000972118 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-20
000972118 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-20
000972118 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-20
000972118 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-20
000972118 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2022$$d2023-08-20
000972118 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2022$$d2023-08-20
000972118 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000972118 9801_ $$aAPC
000972118 9801_ $$aFullTexts
000972118 980__ $$ajournal
000972118 980__ $$aVDB
000972118 980__ $$aI:(DE-Juel1)IEK-13-20190226
000972118 980__ $$aAPC
000972118 980__ $$aUNRESTRICTED
000972118 981__ $$aI:(DE-Juel1)IET-3-20190226