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ABSTRACT: The density-potential functional theory (DPFT) of
electrochemical double layer (EDL) is upgraded by adopting
(generalized) gradient approximations for kinetic, exchange, and
correlation functionals of metal electrons. A new numerical scheme
that is more stable and converges faster is proposed to solve the DPFT
model. The DPFT model is calibrated with existing differential double-
layer capacitance (Cdl) data of the EDL at Ag(111)-KPF6 aqueous
interface at five concentrations at room temperature. Metal electronic
effects are essential to explain why the two peaks of the camel-shaped
Cdl curves are almost symmetric in spite of the size difference of the
hydrated cations and anions. A systematic parametric analysis is then
conducted in terms of key EDL properties, including the potential of
zero charge and the differential capacitance. The parametric analysis, on
the one hand, elucidates how quantum mechanical behaviors of metal electrons as well as interactions between metal electrons and
the electrolyte solution impact the EDL properties and, on the other hand, identifies key parameters of the DPFT model, which
should be calibrated using first-principles calculations and/or advanced experiments in the future.

■ INTRODUCTION
Over the past few years, we have been developing a density-
potential functional theory (DPFT) for electrochemical double
layers (EDLs), so named because the grand potential of EDLs is
a hybrid functional in terms of the electron density and the
electric potential.1−3 Broadly speaking, DPFT belongs to
semiclassical theories of EDLs, along with joint density
functional theory (JDFT)4−9 and DFT-reference interaction
site model (DFT-RISM).10−13 The key feature distinguishing
DPFT from other semiclassical models is that the kinetic energy
of electrons is expressed as an explicit functional of electron
density rather than calculated from wave functions of an
auxiliary noninteracting electronic system in the Kohn−Sham
DFT. Such an idea can be traced back to the Thomas−Fermi
theory of an electron gas in the 1920s, which is widely termed
orbital-free DFT (OFDFT) nowadays.14,15

OFDFT has many developments and applications, notably
including the proof of stability of matter using the Thomas−
Fermi−von Weizsac̈ker (TFvW) theory of electronic gas,16

theory of work function and surface energy of metal
surfaces,17−19 computational modeling of materials,14,15,20 and
hydrodynamic theory of quantum plasmonics.21−24 Inspired by
earlier works on metal surfaces,17−19 the jellium model of EDL
developed in the 1980s also employed the OFDFT to describe
metal electronic effects.25−29

As the kinetic energy functional can be, at best, approximated,
OFDFT can by no means surpass Kohn−Sham DFT in terms of
accuracy in computing material properties, though encouraging
progress of improving the OFDFT accuracy has been
reported.30−33 That said, OFDFT has unique merits that make
it attractive to the problem of modeling EDLs. First and
foremost, combined with a classical DFT of the electrolyte
solution, OFDFT allows a grand canonical, namely, constant-
potential description of EDLs. Second, the low computational
cost of OFDFT allows us to model realistic EDLs at
nanoparticles that will be beyond the reach of Kohn−Sham
DFT in years to come. In short, OFDFT offers a viable approach
to tackle two grand challenges of modeling EDLs, namely,
treatment of the electrode potential and simulation of EDLs of
realistic scales. EDL, in turn, provides an exciting playground for
OFDFT to realize its full potential.

In addition to the electronic structure, equally important to
EDL models is the electrolyte solution, which can be treated on
varying levels of complexity, including the Debye−Hückel
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theory, the Poisson−Boltzmann theory, and its variants such as
the modified Poisson−Boltzmann theory, and integral equation
theories such as the reference interaction site model, see recent
review articles.34−36 In DPFT, the free energy functional of the
electrolyte solution was derived rigorously from statistical field
theory and is exactly on the mean-field level.2 Compared to the
Poisson−Boltzmann theory that is most frequently used in joint
DFTs, the obtained free energy functional further considers ion
size effects, orientational polarization of solvent molecules, and
other short-range interactions using a reference system.

DPFT is different from earlier jellium models of EDL in
several aspects. First, previous jellium models were developed
and solved under constant-charge conditions, namely, con-
ditions where the number of metal electrons is preset.25−29

Therefore, the double-layer capacitance calculated from these
jellium models was often plotted as a function of the electrode
charge. On the contrary, DPFT is a constant-potential model
which is able to simulate EDLs as a function of electrode
potential. Second, previous jellium models inherited Smith’s
treatment of the metal surface.17 Specifically, the metal electrons
were described using the Thomas−Fermi−Dirac−Wagner
theory without gradient terms, and the electron density was
solved approximately using trail functions. In comparison,
DPFT upgrades the description of metal electrons by including
gradient terms, and solves for the electron density and the
conjugate electric potential self-consistently using a numerical
scheme. Note in passing that the trail functions are limited to
planar, one-dimensional (1D) EDLs, while the numerical
scheme is, in principle, applicable to EDLs of arbitrary
structures. Third, as for the electrolyte solution, previous jellium
models used either the Poisson−Boltzmann theory or the
integral equation theory of liquid, while DPFT introduces a
general statistical field theory framework into which many effects
and interactions that were neglected before can be incorporated.

This paper is the fourth one in the series. The first paper
introduced the first version of DPFT that used the Thomas−
Fermi−Weizsac̈ker theory for the kinetic energy functional, the
Dirac−Wigner (DW) theory for the exchange−correlation
energy functional, and a modified Poisson−Boltzmann theory
for the electrolyte solution.1 Constant-potential simulations of
metal−solution interfaces were conducted, from which the
potential of zero charge (pzc) was obtained and analyzed in
terms of electrolyte effects. In the second paper, we introduced
the discrete structure of metal cationic cores, considered specific
adsorption of electrolyte ions using a model Hamiltonian

approach, and compared the model with experimental data
measured on Ag(111)-aqueous KPF6 solution interfaces.3 In the
third paper, we focused on improving the treatment of the
electrolyte solution and derived a comprehensive mean-field free
energy functional by following the statistical field theory
procedure.2

The purpose of this paper is 4-fold. First, we modify the theory
by upgrading the exchange−correlation energy functional from
the local density approximation level to the generalized gradient
approximation (GGA) level and using Morse potentials to
describe metal−solution interactions. Second, we improve the
numerical stability and efficiency of solving DPFT by proposing
a new numerical scheme. Specifically, we solve for the cubic root
of the electron density rather than the electron density itself,
which avoids numerical problems encountered in calculating
terms of the electron density with fractional exponents. In
addition, we implement the model in COMSOL Multiphysics,
rather than Matlab previously, because it is more convenient to
model EDLs of various structures in COMSOL Multiphysics.
Third, we calibrate the model with high-quality experimental
data of the EDL at the Ag(111)-KPF6 aqueous interface at five
concentrations.37 Comparison between this model and classical
EDL models reveals the essential roles of metal electronic effects
in understanding detailed features of the experimental data.
Fourth, using the calibrated model as the baseline, we conduct a
systematic parametric analysis of the model, guiding where
further improvements of DPFT should be targeted.

■ MODIFICATIONS TO DPFT
We exposit the DPFT framework in the Supporting Information
of this paper and mention modifications made in this paper
herein. In the quantum part, the exchange−correlation func-
tional is upgraded from the Dirac−Wigner (DW) functional, a
local density approximation, to the Perdew−Burke−Ernzerhof
(PBE) functional,38 a generalized gradient approximation, see
eqs S7−S10. The kinetic energy is described using the Thomas−
Fermi−von Weizsac̈ker (TFvW) functional as in the previous
work.2,3 In Figure 1, we compare two sets of exchange−
correlation functionals, including the PBE functional and the
DW functional used in previous work,3 in terms of the chemical
potential of electrons in metal bulk,
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Figure 1. (a) Chemical potential of electrons in metal bulk calculated using the PBE functional and the Dirac−Wigner (DW) functional for the
exchange−correlation energy. The kinetic energy is described using the Thomas−Fermi−von Weizsac̈ker (TFvW) functional in both cases. The
difference between the two functionals is shown in panel (b). n̅cc

0 is the dimensionless metal cationic charge density normalized to a reference number
density (a0)−3, with a0 being the Bohr radius.
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where eau = 27.2 eV is the energy in atomic units, tTF is the kinetic
energy functional, see eq S6, uX

0 is the exchange energy functional
of a homogeneous electron gas, eq S8, and uC

0 is the correlation
energy functional of a homogeneous electron gas, eq S9. n̅e is the
dimensionless electron density. In this paper, an overbar denotes
a dimensionless number density normalized to the reference
number density (a0)−3, where a0 is the reference length, the Bohr
radius. It is shown that the chemical energy of electrons μe
increases nearly linearly after a brief decrease as the metal
cationic charge density n̅cc

0 increases. The difference between
these two functionals is within 0.3 eV in the examined range of
n̅cc

0 .17 The difference transitions from negative to positive as n̅cc
0

increases.
Following Shandilya, Schwarz, and Sundararaman,39 we use

Morse potentials, expressed in eq S12, instead of truncated
power potentials in our previous work,2,3 to describe metal−
solution interactions. A Morse potential contains three
parameters, namely, a well depth Dl, a coefficient controlling
the well width βl, and an equilibrium bond distance Bl, where the
subscript l indexes different solution components (s for solvent,
c for cation, a for anion). We are about to show in the following
section how these parameters can be determined using first-
principles calculations.

Previously, we solved differential equations in terms of n̅e.
2,3 It

was found that careful treatments are needed for a stable and
convergent numerical solution. Specifically, zero or negative n̅e
must be avoided as n̅e occurs in the denominator, and fractional
exponents of n̅e are required in many places. A positive-defined
n̅e, n̅e

mod = |n̅e| + n̅e
lb with n̅e

lb being a positive lower bound was used
for this end. In this work, we propose a new numerical scheme in
which we solve for ψ = (n̅e)1/3 rather than n̅e. This way, we can
get rid of issues related to fractional exponents of n̅e. The new
controlling equation in terms of ψ is given in eq S39.

The modified model is solved in COMSOL Multiphysics. The
two controlling equations, eqs S39 and S40, are implemented as
a coefficient form partial differential equation. A step-by-step
tutorial of constructing the model from scratch is provided in the
Supporting Information of this article.

■ MODEL PARAMETERIZATION AND CALIBRATION
A basic set of model parameters are obtained from calibrating
the model using experimental data measured on the Ag(111)-
KPF6 aqueous interface by Valette.37 This interface is selected
for model calibration for two reasons. First, PF6

− is found to be a
very weakly specifically adsorbing anion on Ag(111), rendering
that this interface can well mimic an ideally polarizable interface
in a wide potential range that is treated in this model. Specific
adsorption and chemisorption of ions were treated using a
Newns−Anderson Hamiltonian with several additional param-
eters in our previous work.3 These Hamiltonian parameters can
be determined from Kohn−Sham DFT calculations. Calibration
of the DPFT model with chemisorption will be reported in a
future part of this series. Second, Valette reported Cdl curves at a
series of electrolyte concentrations, allowing us to calibrate the
model using a set of Cdl curves rather than a single one.

The model describes a one-dimensional EDL. The metal
cationic cores are represented by a uniform background with a
positive charge density n̅cc

0 , namely,

=n x n x x( ) ( )cc cc
0

M (2)

where = =n N4 0.408a
acc

0
Ag

3
0

Ag

i
k
jjj y

{
zzz with NAg = 47 representing the

number of electrons of a silver atom, and aAg = 4.08 Å is the
length of the cubic closed-packed cell of Ag, which contains four
silver atoms, and a0 = 0.529 Å is the Bohr radius. n̅cc

0 is
normalized to the reference number density (a0)−3. x̅ = x/a0 is
the dimensionless coordinate. This model considers all electrons
and does not require pseudopotentials for the metal cationic
cores anymore. In an all-electrode model, we should use the
vacuum permittivity ϵ0 in the Poisson equation for the metal
phase.

Within a 1D approximation, we do not consider the
discreteness of metal cationic cores, which can be best treated
in a three-dimensional (3D) model. We designate the
coordinate origin, x̅ = 0, in the metal bulk phase, and x̅M as
the dimensionless thickness of the metal region. x̅M should be
large enough, say 20 (∼1 nm), such that the metal bulk is
reached at x̅ = 0. In the metal bulk, the gradients of electron
density and electric potential, denoted ϕ, are zero,

= =n 0, 0e (3)

Here, an overbar denotes variables and operators in the
dimensionless system, = = =n n a a( ) , ,e e

e
k T0

3
0

0

B
with

kB being the Boltzmann constant, T, temperature, e0, the
elementary charge.

In eq 2, θ (x̅M − x̅) is a Heaviside function, which is equal to 1
when x̅ < x̅M and zero elsewise. The other boundary is
designated in the bulk solution, where the boundary conditions
are

=n 0e (4)

because metal electrons cannot go beyond several Å from the
metal surface, and the electric potential is designated as the
reference

= 0 (5)

In this model, the electric potential of the metal, ϕM, is not used
explicitly in boundary conditions. Instead, constant-potential
simulations of the present model are realized by actually varying
μ̃e, which is tantamount to varying ϕM up to a constant of e0,

= +ee 0 M e (6)

Note in passing that it is more fundamental to control μ̃e than
ϕM because a voltmeter measures the difference in μ̃e, not ϕM
between two electrodes.40 We will use −μ̃e, which is equivalent
to ϕM up to some constants, to represent electrode potential in
the figures of this article. In the subsequent discussion, we will
use electrode potential and −μ̃e interchangeably.

After specifying the setup, boundary conditions, and
operating conditions of the model, we now explain the
acquisition of model parameters. The metal parameters, n̅cc

0

and ϵop,M, are already determined for the EDL, and there is no
freedom to tune them. We use the PBE functional with
recommended gradient coefficients θX = 0.1235 and θC = 0.046,
and the only free parameter in electronic functionals is the
gradient coefficient in the kinetic energy, θT, which is to be
determined from calibration with experimental data.

Parameters of the electrolyte solution are adopted from the
literature. Molecular dynamics (MD) simulations have
determined the radii of hydrated K+ and PF6

− to be within 4−
541 and 3−4 Å,42 respectively. We use the upper limits, 5 and 4
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Å, herein. The length of the cubic lattice accommodating a water
molecule is determined to be 3.11 Å, ensuring a bulk
concentration of cs

b = 55M. The relative permittivity of the
bulk solution is ϵb = 78.5. Therefore, knowing the optical
dielectric constant ϵop,S of the electrolyte solution, we can
calculate the effective dipole moment of water molecules to be

=p k T

c Ns
3( )b op,S 0 B

s
b

A
where kB is the Boltzmann constant, T is

the temperature, and NA is the Avogadro constant. The only free
parameter of the electrolyte solution is thus ϵop,S, which is to be
determined from calibration with experimental data. The
continuous transition of the dielectric constant from ϵop,M = 1
in the metal phase to ϵop,S in the solution phase is empirically
described as

= +x x x( ) 1
1

2
(1 erf( ( )))op

op,S
op M (7)

with a coefficient βop controlling the width of the transition
region, and erf (x̅) is the error function.

Parameters of the Morse potentials describing metal−
solution interactions can be acquired from Kohn−Sham DFT
calculations. Water adsorption on Ag(111) has been studied by
Le et al. using ab initio molecular dynamics (AIMD).43 The
binding energy of water is 0.25 eV with a bond length of 2.82 Å.
So, the Morse potential of water reads ws(x̅) = Ds(exp(−2βs(x̅ −
Bs)) − 2 exp(−βs(x̅ − Bs))) with Ds = 0.25 eV and

= =B 5.39A
as

2.82

0
. The coefficient βs can be determined by

fitting the whole potential profile, which is not available in the
AIMD work of Le et al., and we use βs = 1 as an initial guess.
Since hydrated K+ (subscript c) and PF6

− (subscript a) are very
weakly adsorbing ions, Da and Dc should be much smaller than
Ds, while Ba and Bc are larger than Bs.

To summarize, unknown model parameters in the current
model are θT, ϵop,S, βl (l = s,c,a,op), Dl (l = c,a), and Bl (l = c,a).
All of these unknown model parameters except θT can be, in
principle, determined from Kohn−Sham DFT calculations.
Herein, these unknown model parameters are estimated by
comparing model-based and experimental Cdl curves at five
concentrations. The impact of these parameters on the model
results will be gauged in a parametric analysis in the next section.

The model calculates Cdl by differentiating the surface free
charge σfree with respect to electrode potential

= = =

=

C e
e
a

x n n

e
a

x n n

d ( )

d ( )

dl
free

M
0

free

e

0
2

0
2

e
c a

0
2

0
2

e
e cc

(8)

where the second equal sign transforms the electrode potential
to the electrochemical potential of electrons as expressed in eq 6,
the third equal sign is due to the definition of

= x n nd ( )e
afree c a

0

0
2 , the prefactor e

a
0

0
2 results from the

balance of dimensionality, and the fourth equal sign corresponds
to another way of calculating σfree. These two ways of calculating
σfree are equivalent because the total system is electroneutral,
∫ dx̅(n̅e + n̅a − n̅c − n̅cc) = 0.

At low concentrations, the Cdl curve has a Gouy−Chapman
minimum that is located at the potential of zero charge (pzc).
The specific value of μ̃e corresponding to the pzc, denoted μ̃e,pzc,
is decomposed into two parts,

= ee,pzc e 0 M,pzc (9)

where ϕM,pzc is the inner potential of the bulk metal relative to
the bulk solution under this condition, and μe is the chemical
potential of electrons in the bulk metal, as expressed in eq 1.

Figure 2 shows a comparison between model-based and
experimental results ofCdl of Ag(111)-KPF6 aqueous interface at

five concentrations (100, 40, 20, 10, 5 mM) at 25 ± 2 °C.37 The
model-based results at five concentrations are calculated using
the same set of tunable model parameters θT = 2.08, ϵop,S = 4, βl(l
= s,c,a,op) = 1, Dl(l = c,a) = Ds/6, and Bl(l = c,a) = 7.56. The
value of θT is greater than 5/3 given by the original von
Weiszac̈ker theory, which is not surprising as the latter theory is
exact only for a single-electron system.44 ϵop,S falls into the usual
range between 3 and 6 for the dielectric constant of the inner
layer of the EDL.45 When converted to Å−1, βl corresponds to
0.53 Å−1, which is close to values between 0.4 and 1.1 Å−1 for a
similar system.39Bl represents a reasonable bond length of 4 Å.
The model can well reproduce the well-known camel shape of
the Cdl curve and the lifting trend of the Gouy−Chapman
minimum with increasing concentration. Model-based and
experimental data are plotted in the same graph in Figure S1,
where noticeable differences between them are observed.
Experimental values are overall larger than model-based values,
which could be attributed to an underestimated roughness
factor. The two peaks that signify overcrowding of counterions
when the EDL is highly charged are slightly broadened in the
model. In addition, model-based values are much lower than
experimental values when −μ̃e < 3.8 eV. An improved agreement
between the model and experiments can be expected by global
optimization of model parameters, which are tuned by hand in
this work.

Interestingly enough, the two peaks almost have the same
height, though hydrated K+ (the left peak) is bigger than PF6

−

(the right peak). This implies that the left peak will be higher
than the right one if cations and anions are of the same size, as
will be shown later. This asymmetry is ascribed to metal
electronic effects in this model. By contrast, without considering
metal electronic effects, the classical GCS model with symmetric
size would lead to two symmetrical peaks, e.g., see Figure 7 in ref

Figure 2. Comparison between model and experimental results of the
differential double-layer capacitance (Cdl) of Ag(111)-KPF6 aqueous
interface at five concentrations indicated in the figure.37 Experimental
data were reported by Valette in the third part of his fundamental
measurements on silver single crystals. Experimental data are corrected
using the roughness factor of 1.08 determined by Valette. The model is
parameterized according to the experiments. The model results at five
concentrations are calculated using a single set of model parameters,
which are θT = 2.08, ϵop,S = 4, βl(l = s,c,a,op) = 1, Dl(l = c,a) = Ds/6, and
Bl(l = c,a) = 7.56 corresponding to a bond length of 4 Å.
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46. Hatlo, van Roij, and Lue used one size for both cations and
anions when fitting their model considering ion polarizability to
Valette’s data.47 μ̃e,pzc = −4.05 eV, corresponding to a PZC of
0.695 V vs saturated calomel electrode (SCE), is reproduced by
the model. The subsequent parametric analysis will show that
μ̃e,pzc is mostly affected by θT and ϵop,S.

The Cdl curves are overall properties of an EDL. The model
can provide spatially resolved, atomistic scale insights of EDL.
Figure 3 displays the model results for the Ag(111)-0.1M KPF6
aqueous interface at five electrode potentials spanning from
negative to positive σfree. In these plots, the metal edge is

relocated at x = 0. Figure 3a shows the overall distribution of the
electron density normalized to its bulk value, and (b) gives a
close-up of the spillover region just outside the interface. The
electron tail stretches out more at lower electrode potentials,
viz., less negative μ̃e when electrons have a higher potential
energy. An overshoot in the electron density is observed near x =
0. Figure 3c exhibits the distribution of electric potential ϕ, and a
close-up just outside the metal is shown in Figure 3d. A change
in the sign of ϕ signifies a change in the sign of σfree and a change
in the identity of counterions when varying μ̃e. At more negative
μ̃e, namely, more positive electrode potential, ϕ is more positive,

Figure 3. Model results for the Ag(111)-0.1M KPF6 aqueous interface at five electrode potentials as indicated in the legends of (e): (a) overall
distribution of the electron density normalized to its bulk value, (b) close-up in the spillover region just outside the interface, (c) distribution of electric
potential ϕ, (d) close-up just outside the metal, (e) and (f) dimensionless densities of anions and cations normalized to their bulk values, respectively,
(g) normalized density of water, and (h) distribution of permittivity. In all of these plots, the metal edge is shifted to x = 0. (i) Schematic illustration of
the EDL structure with water in the first layer and hydrated ions in the diffuse layer.
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attracting anions into the near-surface region and repelling
cations out of the region, as shown in Figure 3e,f for the
normalized density of anions and cations, respectively.

All of the above phenomena are already known from classical
GCS models46,48−50 and in our previous works.2,3 The use of a
Morse potential that is deeper and closer to the metal surface for
water results in a dense packing of water molecules on the metal
surface, Figure 3g. Hydrated counterions reside outside of this
water layer; see a schematic diagram in Figure 3i. The steric
effects of counterions diminish water density beyond the first
water layer. The total permittivity is shown in Figure 3h, which
follows the distribution of water density. We see a transition
from ϵop,M = 1 in the metal phase to ϵop,S = 4 around x = 2 Å. Even
though the densities of water and ions are zero around x = 2 Å,
ϵop,S is larger than 1 to account for the screening effects of the
electronic cloud of the first water layer.

■ PARAMETRIC ANALYSIS
We now use the calibrated model to explore the influence of
selected model parameters. The parametric analysis will be
conducted in three groups. The first group contains parameters
related to the electronic structure, including gradient coefficients
in electronic functionals, θT and θXC, and the metal cationic
charge density n̅cc

0 . The second group focuses on the influence of
solvent, including the distribution of optical permittivity near
the metal surface, described by ϵop(x̅) in eq 7, the dipole
moment of solvent, and the Morse potential of metal−solvent
interactions. The last group consists of parameters related to
ions, including ion size, ion concentration, and parameters in
Morse potentials of metal−ion interactions.

In addition to Cdl defined in eq 8, the moment of the electron
density distribution will be used in the subsequent analysis,
defined as

=M n n x( )xded e cc (10)

where n̅cc is given by eq 2. A more positive Med represents a more
extended distribution of electron density, equivalently, a larger
potential drop across the metal surface if the permittivity
distribution is fixed.
Electronic Structure Parameters. Figure 4a,c shows the

Cdl curve as a function of −μ̃e at three values of θT and θXC,
respectively. Other parameters except the one under evaluation
have their base values in this one-factor-at-a-time study.
According to eq 6, varying −μ̃e is equivalent to varying the
inner potential of the electrode ϕM. We do not analyze θX and θC
independently because the gradient terms in the exchange and
correlation functionals are combined into one term with one
composite gradient coefficient θXC = θX − π2θC/3.

The Cdl curves are shifted along the −μ̃e axis with varying θT
and θXC. Specifically, the Cdl curve is shifted to the right side at
more positive θT and more negative θXC. Accordingly, the pzc is
more positive at more positive θT and more negative θXC. As the
chemical potential of electrons μe is independent of θT and θXC,
as seen from eq 1, variation in the pzc is solely due to variation in
ϕM,pzc, according to eq 9, which is determined by the distribution
of the electron density at the metal surface.

Figure 4b,d shows the dimensionless moment of the electron
density distribution, Med, defined in eq 10. The general trend is
that Med decreases with more positive electrode potential. That

Figure 4. Differential double-layer capacitance (Cdl) curve as a function of the electrochemical potential of electrons, −μ̃e, which can be transformed to
the electrode potential up to a constant. The two gradient coefficients, θT in panels (a) and (b), θXC in panels (c) and (d) are varied at three levels.
Effect of θT and θXC on the moment of the electron density distribution defined in eq 10 is shown in panels (b) and (d), respectively. In this one-factor-
at-a-time study, other parameters except the one under evaluation have their base values.
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is to say, the electron tail is shrunk at more positive electrode
potential when the electrochemical potential of electrons is
lower. In addition, Med increases at more positive θT and more
negative θXC. The opposite influence of θT and θXC is the
consequence of opposite signs of the kinetic and exchange−
correlation energy of a homogeneous electron gas. The electron
density is distributed in such a profile that the total energy is
lowest. The gradient terms in the total energy grow at more
positive θT and more negative θXC if the electron density
distribution is kept the same. To counteract this increasing
trend, the electron density distribution should become more
even, namely, Med increases.

Different metals and different facets of a metal have different
values of n̅cc

0 . Figure 5 shows that the Cdl curve is elevated at

larger n̅cc
0 because there are more electrons to screen the electric

field in the double layer. A nonmonotonic dependence of μ̃e,pzc
on n̅cc

0 is observed in Figure 5. According to eq 9, μ̃e,pzc is the
difference between the chemical part μe and the electrostatic part
e0ϕM,pzc. The chemical potential μe grows with n̅cc

0 in the
examined range, as shown in Figure 1. ϕM,pzc also grows with n̅cc

0 .
Therefore, the nonmonotonic dependence of μ̃e,pzc results from
the balance of two monotonically increasing trends. It is
important to understand that we have used the same θT. At this
level of theory, θT is an empirical parameter that should be
calibrated for each metal. In addition, it is about to show that
μ̃e,pzc is markedly impacted by ϵop(x̅), which depends on the
solvent properties.
Effect of Solvent Properties. Figure 6 exhibits the

influence of solvent parameters, including the solvent dipole
moment (ps) in Figure 6a,b, and the metal−solvent bond length
in the Morse potential Bs in Figure 6c,d. The Cdl curve is elevated
up with increasing ps in the unit of Debye (D), as expected. In
addition, the pzc shifts from −4.1 eV at ps = 3D to −4.06 eV at ps
= 4D and further to −4.02 eV at ps = 5D. At larger ps, Figure 6b
shows that the electron density distribution is shrunk when μ̃e is
more negative than −3.8 eV but expanded when μ̃e is more
positive than −3.8 eV. Overall, Med drops faster with increasing
electrode potential when ps is higher.

At high electrode potentials, ϕ is positive near the metal
surface, see Figure 3d. Solvent with larger ps can screen the
electric field more efficiently, leading to a less positive ϕ in the
electron tail region. This means that chemical potential μe is
higher at a fixed μ̃e when ps is larger. According to Figure 1a, μe
decreases with electron density in the electron tail with ne <
0.003. Therefore, when ps is larger, ne should decrease to

compensate for the decreased ϕ in the electron tail region at a
fixed μ̃e.
Cdl grows when the metal−solvent bond length in the Morse

potential Bs is shortened, as shown in Figure 6c. This
phenomenon can be understood readily using Helmholtz’s
model of EDL. The capacitance of a planar capacitor is larger
when the gap between two end plates constituting the planar
capacitor is narrower. When Bs is increased to 7a0, namely, when
the bond length is similar for solvent and ions, we find a spike of
the cation density distribution around 0.35 nm before the metal
surface at μ̃e = −3.8 eV, Figure 6d. This spike indicates that
cations as the counterions can break into the first solvent layer
when the local electric potential is negative enough, as
schematically shown in Figure 6e. Such a competition between
solvent molecules and counterions was also revealed in our
previous work.3

Shatla et al. recently studied the pzc of the Au(111)-
nonaqueous solution interfaces.51 Their study shows that the
pzc is 0.31 VAg/Ag+ in DMSO with ps = 1.97D, −0.01 VAg/Ag+ in
DMSO with ps = 3.96D, and −0.1 VAg/Ag+ in PC with ps = 4.9D.
This trend that the pzc shifts to negative values when ps increases
is consistent with the model results in Figure 6a. However, the
pzc of Ag(111)-ACN aqueous interface with ps = 3.93D is 0.24
VAg/Ag+, which breaks the above trend.

It is important to note that the model results in Figure 6a are
obtained by only changing ps while keeping all other parameters
unchanged. In experiments, when one changes the solvent, many
parameters change at the same time. Therefore, the discrepancy
between the model and experiments shall not be surprising. For
example, we show in Figure 7 that the pzc can be markedly
influenced by other parameters related to the solvent. We
change ϵop,S in eq 7 and keep all other parameters unchanged.
Figure 7a shows that the Cdl curve is elevated, and the pzc
decreases when ϵop,S is increased from 3.6 to 4.4. The total
permittivity is shown in Figure 7d. When ϵop,S is lower, the
potential drop across the metal surface at the pzc is more
positive, as shown in Figure 7b. Since the potential in the
solution bulk is taken as the reference, the inner potential in the
metal bulk is higher when ϵop,S is lower, Figure 7b. A higher inner
potential of the metal leads to a more negative μ̃e,pzc, namely, a
more positive pzc, since the chemical potential μe in the metal
bulk does not change with ϵop,S. As μ̃e,pzc is less negative at larger
ϵop,S, electron distribution is more extended outside the metal,
Figure 7c.
Effect of Ion Properties. The ion concentration is one of

the easiest parameters tunable in experiments. In Figure 8, we
examine how the Cdl curve depends on the ion concentration
while all other parameters have their base values. Compared to
Figure 2, we include a more concentrated electrolyte solution of
1M. The camel shape with the minima at the pzc is transitioned
to a volcano shape when the ion concentration increases. The
camel−volcano transition has been clearly exposited by
Kornyshev,48 and many others; see a recent review.49 However,
these classical EDL models would predict the volcano peak is
also at the pzc where the camel minima are located. By contrast,
the present model shows a left shift of the volcano peak relative
to the pzc, which is a manifestation of metal electronic effects.

The model uses different sizes for cations and anions.
Specifically, the radius of hydrated K+ and PF6

− are 5 and 4 Å,
respectively. According to classical EDL models,46,48−50 the size
asymmetry will lead to asymmetric camel shapes. For the present
case, one would expect that the peak at lower electrode potential
that signifies crowding of larger cations would be smaller than

Figure 5. Influence of metal cationic charge density (n̅cc
0 ) on differential

double-layer capacitance (Cdl) curve as a function of the electro-
chemical potential of electrons, −μ̃e. Other model parameters have their
base values.
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that at more positive electrode potential. By contrast,
experimental data and model results show a nearly symmetric
camel shape. In Figure 8b, we show the model results when the
anion radius varies between 3, 4, and 5 Å. The peak at more
positive electrode potential grows when the anion radius is
smaller. When cations and anions have the same radius of 5 Å,
the peak at lower electrode potential is higher, which would not
be expected from classical EDL models. This again reflects the
essential role of metal electrons. At lower electrode potentials,
electron density is extended more outside the metal, see Figure
3b, enhancing the capability of screening the electric field
emanated from the metal, namely, increasing the Cdl.

The influence of the well depth of Morse potential on Cdl is
examined in Figure 9a,b for anions and cations, respectively. The
anion effect is seen on the right peak at more positive electrode
potentials when the metal surface is positively charged, while the
cation effect is seen on the left side at more negative electrode
potentials when the metal surface is negatively charged. Around
the pzc, Cdl grows when the well depth is larger for both cations
and anions because it effectively enriches the local concen-
tration. This has been recently discussed in detail by Doblhoff−
Dier and Koper in the context of the EDL at Pt-aqueous solution
interfaces.52 A shift in the pzc is observed for both cases when

the well depth is changed. This reminds us of the fact that the pzc
is an interfacial property that is determined by both parties
constituting the interface, namely, the metal and the nearby
electrolyte solution. A change in the local reaction environment
in the EDL would change the pzc, even though the cations and
anions are not specifically adsorbed. Note in passing that Valette
used the shift in the pzc at different ion concentrations as a
descriptor of ion-specific adsorption.53−55 The model results
presented in Figure 9 reveal that it might be problematic to use
the concentration-dependent shift of the pzc as a descriptor of
specific adsorption.

■ CONCLUSIONS
We have modified the density-potential functional theory
(DPFT) of electrochemical interfaces using a generalized
gradient approximation for exchange−correlation energy and
Morse potentials for metal−solvent/ions interactions. We have
calibrated an EDL model based on DPFT using experimental
differential double-layer capacitance (Cdl) curves measured on
Ag(111)-KPF6 aqueous solution by Valette. The calibrated
model has then been subject to a parametric study in which
parameters of metal electrons, solvent, and ions are examined.

Figure 6. Effect of solvent properties on (a), (c) the differential double-layer capacitance (Cdl), (b) the dimensionless moment of electron density
distribution (Med), and (d) normalized cation density. Graphs (a) and (b) correspond to the effects of solvent dipole moment ps, (c) and (d) the metal-
bond length in the Morse potential Bs. The line markers in panel (d) represents −μ̃e for the case of Bs = 7a0. Panel (e) depicts the scenario where cations
as the counterions break into the first solvent layer.
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The difference in chemical potential of electrons between the
PBE functional and the Dirac−Wagner functional is within 0.3
eV when the charge density of metal cationic cores (n̅cc

0 ) varies
from 10−4 to 10−1. The difference in work function and potential
of zero charge is thus mainly due to the interfacial potential drop
and the electron density distribution across the metal surface. In
this regard, the gradient coefficients in kinetic and exchange−
correlation functionals, namely, θT and θXC, as well as the
permittivity near the metal surface, characterized by ϵop,S, are
important. A larger θT, a more negative θXC, and a lower ϵop,S lead
to a more extended metal electron tail, resulting in a larger

interfacial potential drop and a more positive potential of zero
charge (pzc). Cdl at the pzc is larger when the charge density of
metal cationic cores (n̅cc

0 ) is larger. However, the pzc varies
nonmonotonically with n̅cc

0 . The Cdl curve is elevated, while the
pzc decreases when the solvent dipole moment (ps) is greater.
Changing the well depth of Morse potential affects different
peaks of the Cdl curve for cations and anions and also shifts the
pzc. The parametric analysis indicates that θT, the permittivity
within 1 nm from the metal surface, and metal−solution
interactions are key parameters of the present model, which

Figure 7. (a) Effect of optical permittivity ϵop,S on the differential double-layer capacitance (Cdl). Panels (b) and (c) show the distribution of electric
potential ϕ and normalized electron density, respectively, at the potential of zero charge. Panel (d) shows the distribution of total permittivity at the
potential of zero charge. Plateaus at different values (3.6, 4.0, 4.4) are seen near the metal surface, followed by a transition to the bulk permittivity (not
shown). Lines of the same color have the same value of ϵop,S. Other parameters have their basic values.

Figure 8. Influence of ion concentration and ion size on differential double-layer capacitance (Cdl) curve as a function of the electrochemical potential
of electrons, μ̃e. In panel (a), the radius of cations and anions are 5 and 4 Å, respectively, as in the base case. In panel (b), we vary the anion radius from 3
to 5 Å.
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should be calibrated carefully with first-principles methods and
experiments.

This study also reveals several aspects of the difference
between the present model and classical EDL models. In terms
of physics, the present model contains quantum mechanical
effects of metal electrons, as well as short-range interactions
between the metal and solvent/ions; both are not considered in
many classical EDL models. This allows this model to calculate
the pzc, which is usually taken as a potential reference in classical
EDL models. In terms of phenomenology, the present model
and classical EDL models differ in describing the dependence of
Cdl on the ion size and concentration. Both models give a
camel−volcano transition of the shape of Cdl with increasing the
ion concentration. Additionally, the present model shows that
the peak of the volcano peak at high ion concentration does not
coincide with the minimum of the camel-shaped Cdl. Classical
EDL models would lead to a camel-shaped Cdl curve with two
symmetric peaks when cations and anions have the same size.
However, the present model gives a camel-shaped Cdl curve with
a higher left peak for the case of symmetric size. Both
discrepancies between this model and EDL models are
attributed to metal electronic effects.
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