001     972131
005     20250701125911.0
037 _ _ |a FZJ-2023-01090
100 1 _ |a Wolfgang Woiwode, Dr.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 12th Atmospheric Limb Workshop
|c Brussels
|d 2023-05-22 - 2023-05-26
|w Belgium
245 _ _ |a Limb observations across scales: Examples of advances in airborne FTIR sounding and a glimpse of capabilities of proposed future space missions
260 _ _ |c 2023
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1725979172_9893
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Fourier-transform infrared (FTIR) sounding of the thermal emission of the Earth’s atmosphere is versatile tool to address multiple scientific questions with one single instrument. Broad spectral channels in combination with high spectral resolution provide access to a variety of trace gases, temperature and clouds. In the last decades, airborne FTIR sounders were deployed for demonstration of technologies designated for space instruments, validation of implemented missions, and addressing distinct scientific questions. We present a brief selection of observations by the airborne limb sounder MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding-STRatospheric aircraft), the airborne limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere), the balloon-borne MIPAS-B instrument, and MIPAS onboard ENVISAT in the last decades together with further observations and model data. The presented results comprise observations of the Arctic polar vortex, populations of large nitric acid trihydrate particles in polar stratospheric clouds, the mesoscale fine structure of a tropopause fold, and gravity waves caused by merging jet streams. These studies illustrate how advances in FTIR limb observations enabled access to smaller scales and supported atmospheric research in a time, where important progress was also made in chemistry transport modelling and weather forecasting. They furthermore provide a glimpse of what can be expected from proposed future space missions, such as the ESA earth explorer 11 candidate CAIRT (Changing-Atmosphere Infrared Tomography).
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
700 1 _ |a Höpfner, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fiedl-Vallon, Felix
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sinnhuber, Björn-Martin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 4
|u fzj
700 1 _ |a Johansson, Sören
|0 P:(DE-HGF)0
|b 5
700 1 _ |a von Clarmann, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dörnbrack, Andreas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Glatthor, Norbert
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Grooss, Jens-Uwe
|0 P:(DE-Juel1)129122
|b 9
|u fzj
700 1 _ |a Gulde, Thomas
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kaifler, Bernd
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kiefer, Michael
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kleinert, Anne
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Kretschmer, Erik
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Maucher, Guido
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Neubert, Tom
|0 P:(DE-Juel1)133921
|b 16
|u fzj
700 1 _ |a Nordmeyer, Hans
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Oelhaf, Hermann
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Piesch, Christof
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Stiller, Gabriele
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Ungermann, Jörn
|0 P:(DE-Juel1)129105
|b 21
|u fzj
700 1 _ |a Wetzel, Gerald
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 23
|u fzj
909 C O |p VDB
|o oai:juser.fz-juelich.de:972131
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129143
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129122
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-HGF)0
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 14
|6 P:(DE-HGF)0
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 15
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)133921
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 17
|6 P:(DE-HGF)0
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 19
|6 P:(DE-HGF)0
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 20
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)129105
910 1 _ |a KIT
|0 I:(DE-HGF)0
|b 22
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 23
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ITE-20250108
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21