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Heavy-quark spin symmetry (HQSS) implies that in the direct decay of a heavy quarkonium with spin S,
only lower lying heavy quarkonia with the same spin S can be produced. However, this selection rule,
expected to work very well in the b-quark sector, can be overcome if multiquark intermediate states are
involved in the decay chain, allowing for transitions to the final-state heavy quarkonia with a different spin

S0. In particular, the measured decays ϒð10860Þ → πZð0Þ
b → ππϒðnSÞ (n ¼ 1, 2, 3) and ϒð10860Þ →

πZð0Þ
b → ππhbðmPÞ (m ¼ 1, 2) appear to have nearly equal strengths, which is conventionally explained by

a simultaneous presence of both Sbb̄ ¼ 0 and Sbb̄ ¼ 1 components in the wave functions of the Zbs in equal
shares. Meanwhile, the destructive interference between the contributions of the Zb and Z0

b to the decay
amplitude for a ππhb final state kills the signal to zero in the strict HQSS limit. In this paper, we discuss

how the HQSS violation needs to be balanced by the narrowness of the Zð0Þ
b states in the physical case to

allow for equal transition strengths into final states with different total heavy quark spins, and how spin
symmetry is restored as a result of a subtle interplay of the scales involved, when the mass of a heavy quark
becomes infinite. Moreover, we demonstrate how similar branching fractions of the decays into ππhb and
ππϒ can be obtained and how the mentioned HQSS breaking can be reconciled with the dispersive
approach to the ππ=KK̄ interaction in the final state and matched with the low-energy chiral dynamics in
both final states.

DOI: 10.1103/PhysRevD.107.014027

I. INTRODUCTION

The spectroscopy of hadronic states containing heavy
quarks remains one of the fastest developing and most
intriguing branches of studies of the strong interaction.
Many new states have been discovered in the spectrum of
charmonium and bottomonium, which do not fit into the
quark model scheme and qualify as exotic states. For
example, the states Z�

b ð10610Þ, Z�
b ð10650Þ [1], Z�

c ð3900Þ
[2,3], Z�

c ð4020Þ [4], and Z�ð4430Þ [5–8] are charged and
decay into final states containing a heavy quark Q and its
antiquark Q̄ plus light hadrons. Therefore, their minimal
quark content is four quarks. The interested reader can find
a comprehensive overview of the current experimental and

theoretical status of the exotic hadrons with heavy quarks in
the dedicated review papers, for example, in Refs. [9–15].
The bottomoniumlike states Z�

b ð10610Þ and Z�
b ð10650Þ

(for brevity in what follows often referred to as Zb and Z0
b,

respectively) are an ideal laboratory to get a better under-
standing of exotic states, since they exist as two resonances
with the same JPC ¼ 1þ− [16], split by only about 45 MeV
and are seen simultaneously in several modes. Specifically,
the Belle collaboration observed them as distinct peaks

(i) in the invariant mass distributions of the π�ϒðnSÞ
(n ¼ 1, 2, 3) and π�hbðmPÞ (m ¼ 1, 2) subsystems
in the dipion transitions from the vector bottomo-
nium ϒð10860Þ [1] and

(ii) in the elastic BB̄�1 and B�B̄� channels in the decays
ϒð10860Þ → πBð�ÞB̄� with the dominant branching
fractions [17,18].
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1Hereinafter a properly normalized C-odd combination of the
BB̄� and B̄B� components is understood.
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In addition, the Zbð10610Þ and Zbð10650Þ states could
in principle be experimentally searched for (and hopefully
seen) in the ρηb channel. More specifically, because of a
large ρ-meson width, the relevant channel to look at would

be ϒð10860Þ → πZð0Þ
b → πðππÞI¼1ηb, which is however

difficult experimentally because of a potentially large
background related to the presence of the neutral pion in
the final state. Meanwhile, no data for the given channel
exist to date. On the other hand, the measured branching
fractions ϒð10860Þ → ðπþπ−π0Þnon-ωχbJ (J ¼ 1, 2) are by
an order of magnitude suppressed [19] relative to the
ππϒðnSÞ and ππhbðmPÞ hidden-flavor decay channels
considered in this work. One may therefore expect that
the analogous branching for the πðππÞI¼1ηb final state is
also negligibly small. The fact that the ρ and χbJ are in a
relative P wave in contrast to the S-wave final state ρηb
should not affect this estimate since both channels open far
away from the relevant energy range near the Bð�ÞB̄�
thresholds, so the centrifugal barrier suppression should
not be operative any longer. Also, the measured elastic and
inelastic branching fractions for ϒð10860Þ listed in the
items (i) and (ii) above leave very little room for other
possible contributions.
The two most prominent explanations for the Zbs

claimed to be consistent with the data are provided by a
tetraquark model and a hadronic molecule picture, see, e.g.,
Refs. [10–12,15] for review articles and references therein.
A review of the sum rules approach to the exotic states with
heavy quarks and relevant references on the subject can be
found in Ref. [20]. It should be noted that a particularly
close location of the Zbs to the thresholds of the BB̄� and
B�B̄� channels provides a strong hint in favor of their
molecular interpretation.
Both the Z�

b ð10610Þ and Z�
b ð10650Þ contain a heavy bb̄

pair, so it is commonly accepted that heavy-quark spin
symmetry (HQSS) should be realized to high accuracy in
these systems and indeed, as will be reviewed in Sec. II,
HQSS is able to explain naturally the interference pattern in

the channels Zð0Þ
b → πϒðnSÞ and Zð0Þ

b → πhbðmPÞ [21].
In Sec. III we demonstrate how the experimental

observation that Br½ϒð10860Þ → ππhbðmPÞ� is qualita-
tively similar or actually even larger than Br½ϒð10860Þ →
ππϒðnSÞ� [19] can be reconciled with HQSS and its
violation. It appears as a result of a subtle interplay of
the scales involved in the system—the most relevant being
the relationship between the widths of the Zb states and
their mass difference. Also, we discuss the restoration of
spin symmetry as the heavy quark mass is taken to be
infinitely large.
Section IV is devoted to the inclusion of the ππ=KK̄

interaction in the final state. In particular, in Refs. [22–24] it
is explained how the ππ=KK̄ final state interaction (FSI)
can be included in the spin conserving heavy meson decays
ϒ → ππϒ0 by means of twice subtracted dispersion

integrals. Here the structure of the subtraction terms can
be fixed by the chiral structure of the transition amplitudes,
giving rise to ϒ → ππϒ0 contact interactions. While the
chiral structure for the transitions of the kind ϒ → ππhb is
the same, such counterterms violate HQSS and thus are
expected to be strongly suppressed quantitatively. How this
pattern can be reconciled with the S-wave ππ=KK̄ FSI also
for this kind of transitions is discussed in Sec. IV. We
summarize in Sec. V.

II. SPIN WAVE FUNCTIONS

The key that allows for a change of the heavy-quark spin
in the presence of multiquark states lies in the fact that the
heavy-quark spins get rearranged in the assumed compact
building blocks. Indeed, let us stick to the strict HQSS limit
of an infinite b-quark mass, mb → ∞ (quantities in this
limit will be labeled by the superscript ð0Þ), and, following
Ref. [21], assume for illustration a molecular substructure

for the Zð0Þ
b and Zð0Þ0

b states

Zð0Þi
b ∼ BB̄�

i − B̄B�
i ; Zð0Þ0i

b ∼ iϵijkB�
j B̄

�
k: ð1Þ

Then, taking the spin wave functions of the B and B�
mesons in the form

B ¼ ψ†
q̄χb; B�

i ¼ ψ†
q̄σ

iχb; ð2Þ

one arrives at the following spin structure of the IGðJPÞ ¼
1þð1þÞ molecular states

Zð0Þi
b ∼ ðψ†

q̄1χbÞðχ†b̄σiψq2Þ þ ðψ†
q̄1σ

iχbÞðχ†b̄ψq2Þ;
Zð0Þ0i
b ∼ iϵijkðψ†

q̄1σ
jχbÞðχ†b̄σkψq2Þ: ð3Þ

Finally, via a Fierz rearrangement, these structures can be
rewritten as

Zð0Þi
b ∼ ðψ†

q̄1ψq2Þðχ†b̄σiχbÞ þ ðψ†
q̄1σ

iψq2Þðχ†b̄χbÞ;
Zð0Þ0i
b ∼ ðψ†

q̄1ψq2Þðχ†b̄σiχbÞ − ðψ†
q̄1σ

iψq2Þðχ†b̄χbÞ; ð4Þ

where the combinations ðχ†
b̄
χbÞ and ðχ†b̄σiχbÞ correspond to

the states with Sbb̄ ¼ 0 and Sbb̄ ¼ 1, respectively.
Therefore, relations (4) entail two important messages2

(i) in the strict HQSS limit both Zb states carry spin-0
and spin-1 components with equal weight and

(ii) the spin-0 and spin-1 components appear with
different relative signs in the two states.

2Because of the coupled-channel transitions, the physical Zbs
appear to be dynamical mixtures of the basis states introduced in
Eq. (1). Thus, these messages should be regarded as being
originated from the strict HQSS.

BARU, EPELBAUM, FILIN, HANHART, and NEFEDIEV PHYS. REV. D 107, 014027 (2023)

014027-2



Importantly, as demonstrated in Ref. [21], the above
nontrivial interference pattern is indeed consistent with the
data, where the two Zb peaks appear to be equally strong in
the decay chains

ϒð10860Þ → πZð0Þ
b → ππϒðnSÞ; n ¼ 1; 2; 3;

ϒð10860Þ → πZð0Þ
b → ππhbðmPÞ; m ¼ 1; 2; ð5Þ

with a constructive interference in the former and a
destructive interference in the latter case. This underlines
the fact that, although in general coupled-channel transi-
tions mix the basis states (1), nevertheless, both wave
functions of the physical Zbs still contain the Sbb̄ ¼ 0 and
Sbb̄ ¼ 1 components in comparable shares. The same
pattern emerges in the tetraquark picture proposed in
Ref. [25], where the driving subclusters are compact
diquarks and antidiquarks. In contrast to the two scenarios
just sketched, it should be stressed that without sizable
heavy-quark spin-0 and spin-1 clusters within the Zb states
the observed pattern is unexplained and appears to be very
unnatural.
In the limit of the heavy quark mass going to infinity, the

heavy-quark spin needs to be conserved. It is thus interest-
ing to investigate, how this limit is reached in the scenario
outlined above. It turns out that what controls the impor-
tance of the hb final states is the ratio of the Zb’s mass
splitting, which violates HQSS and thus vanishes in the
heavy quark limit, and the Zb’s widths, which survive the
heavy quark limit. This will be discussed in detail below.

III. SPIN-FLIP AND SPIN-CONSERVING
TRANSITIONS

In this section we study the transition amplitudes for the
reactions ϒ → ππϒ0 and ϒ → ππhb via two Zb states and
discuss (i) the scales that make it possible for the two
amplitudes to have signals of a similar size for the physical
masses of the heavy states involved and (ii) how the heavy-
quark limit can be restored.
Following Ref. [21], the transition amplitudes read

Mðϒ → ππϒ0Þ ¼ Cϒ0 ðϒ ·ϒ0�Þωþω−½GþðωþÞ þ Gþðω−Þ�
ð6Þ

and

Mðϒ → ππhbÞ ¼ Chbðϒ · ½p− × h�b�ÞωþG−ðωþÞ
þ Chbðϒ · ½pþ × h�b�Þω−G−ðω−Þ; ð7Þ

where ϒ, ϒ0, and hb are the polarization vectors of the
JP ¼ 1� states while Cϒ0 , Chb are normalization constants.
The Green’s functions G� describe the contribution of the
Zbs in the intermediate state. The pion 4-momenta are taken
in the form

p� ¼ ðω�; p�Þ: ð8Þ

Importantly, the relations between the spin wave func-
tions (4) imply that

G� ¼ G1 �G2; ð9Þ

where G1 and G2 denote the individual propagators for the
Zb and Z0

b in the intermediate state, respectively. The
nonrelativistic Green’s functions for the Zbs read

GnðωξÞ ¼
�
M5 − ωξ −mZn

þ i
2
ΓZn

�
−1
;

where n ¼ 1, 2 and ξ ¼ �. Further,M5 stands for the mass
of the ϒð10860Þ and both Zbs are treated as unstable
particles with the masses mZ1

¼ mz and mZ2
¼ m0

z and
the widths ΓZ1

¼ Γz and ΓZ2
¼ Γ0

z, respectively. These

widths should be understood as visible widths of the Zð0Þ
b

peaks in the experimental line shapes. Moreover, following
Refs. [21,26,27], we assume Γ0

z ¼ Γz. Here we emphasize
that a quantitative treatment of the experimental line shapes
requires a coupled-channel effective-field-theory (EFT)
based framework manifestly consistent with unitarity, as
given in Refs. [23,28], in which the widths are generated
dynamically. However, for the purposes formulated above,
that is, for studying a nontrivial interplay of various scales,
the use of the simple analytic model of Ref. [21] is
sufficient.
Thus it is easy to find for the Green’s functions G�ðωξÞ

that

GþðωξÞ ¼
1

M5 − ωξ −mz þ i
2
Γz

þ 1

M5 − ωξ −m0
z þ i

2
Γz

¼
�
4

Γz

�
xξ þ i

ðxξ þ iÞ2 − r2
≡

�
4

Γz

�
fþðxξ; rÞ; ð10Þ

G−ðωξÞ ¼
1

M5 − ωξ −mz þ i
2
Γz

−
1

M5 − ωξ −m0
z þ i

2
Γz

¼
�
4

Γz

�
−r

ðxξ þ iÞ2 − r2
≡

�
4

Γz

�
f−ðxξ; rÞ; ð11Þ

where we introduced two dimensionless parameters,

r ¼ m0
z −mz

Γz
ð12Þ

and

xξ ¼
2

Γz
ðM5 − m̄z − ωξÞ; ð13Þ

with the average mass m̄z ¼ ðmz þm0
zÞ=2.
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To understand the behavior of the amplitude in the
heavy-quark limit, we need to discuss the scaling of its
different ingredients as functions of the heavy-quark mass
mb. First of all, it is easy to see that the width Γz is
(approximately) independent of the heavy-quark mass.
Indeed, the contributions from the inelastic (hidden-
bottom) and elastic (open-bottom) channels to Γz behave as

ΓðinÞ
z ¼ g2in

8πm2
z
pπ ¼ Oðm0

bÞ;

ΓðeÞ
z ¼ g2e

8πm2
z
pB ¼ Oðm0

bÞ; ð14Þ

where it was used that gin ∝ ð ffiffiffiffiffiffi
mb

p Þ2 ∝ mb due to the

relativistic normalization of the heavy fields, g2e ∝ m3=2
b as

the coupling of a compound state to its constituents [29],
and the pion and B-meson momenta scale with the heavy
mass as pπ ¼ Oðm0

bÞ and pB ∝ ffiffiffiffiffiffi
mb

p
, respectively.

Then, according to the heavy-quark effective theory, the
mass of an S-wave heavy-light Bð�Þ meson scales as

mBð�Þ ¼ mb þ Λ̄ −
λ1 þ dHλ2

mb
þ � � � ; ð15Þ

where Λ̄ ≃ ΛQCD is a universal parameter related to the
light-quark dynamics while the mb-independent constants
λ1 and λ2 parametrize the contribution of the spin-
dependent interactions with

dH ¼
�þ3; for 0− state

−1; for 1− state
: ð16Þ

The ellipsis in Eq. (15) denotes terms of a higher order in
the 1=mb expansion. When we see that the binding energies
of Zb and Z0

b are the same in the HQSS limit [21,26,27], it
is easy to see, therefore, that

mz0 −mz ≃mB� −mB ¼ O
�

1

mb

�
; m̄z ≈ 2mb: ð17Þ

Finally, in the mass differenceM5 − m̄z the leading term
2mb is canceled, so that this difference tends to a constant
in the limitmb → ∞. Accordingly the parameter xξ getsmb

independent. Meanwhile, the parameter r introduced in
Eq. (12) scales as r ∝ 1=mb and, therefore, can be used as a
measure of the HQSS breaking effects. At the same time r
is the parameter that controls the strength of the dipion
transitions from ϒð10860Þ. Thus changing the pion energy
ωξ (and accordingly changing xξ) allows one to scan
through the Zb resonance structures to check their evolution
with the variations of the parameter r.
The physical masses and widths are taken from the

Review of Particle Physics by the PDG [19] and read
(in MeV)

m0
z −mz ¼ 45; m̄z ¼ 10630; Γz ¼ 15; ð18Þ

where the width comes as an average between ΓZb
and ΓZ0

b
.

Such parameters correspond to the physical value of
the ratio

rphys ¼ 3; ð19Þ

which is used as a reference point in what follows.
As an illustration we show in Fig. 1 jf�ðx; rÞj as

functions of x (x ¼ xþ and x ¼ x− result in identical
curves) for different values of r. It can be clearly seen
from this figure that the signals in the channels ϒ → ππϒ0
and ϒ → ππhb, which are controlled by the functions
f�ðx; rÞ, respectively, demonstrate quite different patterns
in the limit r → 0. Indeed, while the constructive interfer-
ence in the ϒ0 channel [function fþðx; rÞ] provides the sum
of two peaks at x ¼ 0 for small values of r, the destructive
interference in the hb channel [function f−ðx; rÞ] results in
a severe damping of the signal in this limit, namely,

jfþðx ¼ 0; rÞj→
r→0

1;

jf−ðx ¼ 0; rÞj ≈
r→0

r → 0. ð20Þ

Thus the HQSS indeed gets restored in the heavy quark
limit, and the rate of this restoration is controlled by the
parameter r.
In the meantime, in the opposite regime of r ≫ 1, in

which the effect of the HQSS violation is balanced by the
narrow width [see Eq. (12)], both the peak positions and
their strengths coincide for fþðx; rÞ and f−ðx; rÞ:

xpeak ¼ �rþOðr−1Þ;

jf�ðxpeak; r → ∞Þj ¼ 1

2
þOðr−1Þ: ð21Þ

It is therefore not surprising that, already for r ¼ rphys,
the curves jfþðx; rÞj and jf−ðx; rÞj demonstrate a notice-
able similarity both in the shape and strength, see Fig. 2.
Finally, we study the behavior of the differential rates for

the dipion transitions from the ϒð10860Þ. The doubly
differential decay width for a three-body final state takes
the form

dΓ ¼ 1

ð2πÞ3
1

32M3
5

jMj2dm2
ππdm2

πhb=πϒ0 ; ð22Þ

where, depending on the process considered, jMj2 is the
decay amplitude (6) or (7) squared and averaged over the
polarizations of the vector (axial vector) particles. Then,
expressing m2

πhb=πϒ0 in terms of x ¼ xþ and performing the
integration over the dipion invariant mass, it is straightfor-
ward to arrive at the differential rate in the form

BARU, EPELBAUM, FILIN, HANHART, and NEFEDIEV PHYS. REV. D 107, 014027 (2023)

014027-4



dΓ
dx

¼ Γz

ð2πÞ332M2
5

Z ðm2
ππÞmax

ðm2
ππÞmin

jMj2dm2
ππ: ð23Þ

For the presentation purposes we fix the ratio of the
unknown overall factors Cϒ0 and Chb introduced in the
amplitudes (6) and (7) such that the total decay widths,
evaluated as the integrals from the differential width (23)
over the region in the x covering the Zb peaks, obey the
constraint

Γ½ϒ → πZð0Þ
b → ππϒ0�ðrphysÞ

≃ Γ½ϒ → πZð0Þ
b → ππhb�ðrphysÞ; ð24Þ

in qualitative agreement with the data [19]. The resulting
normalized line shapes (23) are depicted (in arbitrary units)

in the left panel of Fig. 3 from which one can see a
noticeable similarity of the curves in the shape.
We also define the ratio

R ¼ Γ½ϒ → ππhb�ðrÞ
Γ½ϒ → ππϒ0�ðrÞ ð25Þ

and plot it as a function of the parameter r in the right panel
of Fig. 3. From this plot one can see that, in agreement with
the considerations of this section, the probability of the
decay Γ½ϒ → ππhb� vanishes in the strict HQSS limit
(at r ¼ 0) but then grows with r to reach Γ½ϒ → ππϒ0�
at the physical point (19), as prescribed by the normali-
zation condition (24).
Notice also that, alternatively, the limit r → 0 can be

reached by increasing Γz—see the definition (12)—so that
the small Zb widths play an important role in explaining the
observed large branching fractions for the HQSS violating
decays ϒð10860Þ → ππhb.

IV. INCLUSION OF THE PION INTERACTION
IN THE FINAL STATE

A. General remarks

In the previous section it was demonstrated how the
explicit HQSS breaking due to the Zb mass splitting could
be balanced by their narrow widths to provide similar
branching fractions for the reactions with and without
the heavy-quark spin flip. Here we discuss consequences
of yet another peculiar property of the HQSS violation
in the reaction ϒð10860Þ → ππhbðmPÞ as compared
with the ππϒðnSÞ final states. Namely, the tree level
amplitude of the reaction ϒð10860Þ → ππϒðnSÞ admits
two momentum-dependent chiral contact terms (with
two derivatives of the pion fields), which parametrize a
short range interaction in the system, already in the strict
heavy-quark limit [22–24,30]. These contact terms can

r=5

r=1.5

r=0.1
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FIG. 1. The line shapes jfþðr; xÞj (left panel) and jf−ðr; xÞj (right panel) as functions of x from Eq. (13). The function fþðr; xÞ
[f−ðr; xÞ] shows a constructive [destructive] interference of the two Zb states as follows from Eq. (10) [Eq. (11)] for the ππϒðnSÞ
[ππhbðmPÞ] final state. The results shown by the solid, dashed, and dotted lines are for the HQSS violating parameter r ¼ 5, r ¼ 1.5,
and r ¼ 0.1, respectively. The strict HQSS limit corresponds to r ¼ 0.
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0.0

0.1

0.2

0.3

0.4

0.5

x

FIG. 2. The line shapes jfþðx; rÞj (blue dashed curve) and
jf−ðx; rÞj (red solid curve) as functions of x that result from
Eqs. (10) and (11) for r ¼ rphys from Eq. (19). See the caption of
Fig. 1 for further details.
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be matched with two subtraction constants needed to
include the ππ=KK̄ FSI in this reaction. In contrast, the
leading contact interactions in the decays ϒð10860Þ →
ππhbðmPÞ, while having the same chiral structure, violate
HQSS and therefore should be strongly suppressed
relative to those for the transitions that conserve the
heavy quark spin. In what follows, we discuss how this
fact can be reconciled with the fact that, in the individual
reactions,

ϒð10860Þ → πZb → ππhbðmPÞ

and

ϒð10860Þ → πZ0
b → ππhbðmPÞ;

the same number of subtractions is required to render
the dispersive integrals finite as in the channel with the
ππϒðnSÞ final state. Specifically, we demonstrate that the
destructive interference of the two amplitudes in the ππhb
channel [as opposed to the constructive interference for
the ππϒðnSÞ final state] provides a better convergence of
the resulting dispersive integral, so that a smaller number
of subtractions is required.
To bring a quantitative twist to this discussion, we

employ the coupled-channel EFT-based approach devel-
oped for the Zb states in Refs. [28,31] with the ππ=KK̄ FSI
for the transition ϒð10860Þ → ππhbðmPÞ to demonstrate
that its role in this channel is indeed suppressed, in contrast
to the ππϒðnSÞ final states [24].

B. Kinematics and notations

The kinematics of the decays

ϒðpiÞ → πþðpþÞπ−ðp−Þϒ0=hbðpfÞ; ð26Þ

is conventionally introduced through the Mandelstam
invariants,

s ¼ ðpi þ pfÞ2; t ¼ ðpf þ pþÞ2; u ¼ ðpf þ p−Þ2;
ð27Þ

with

p2
i ¼ m2

i ; p2
f ¼ m2

f; p2þ ¼ p2
− ¼ m2

π; ð28Þ

where mπ , mi, and mf are the masses of the pion,
ϒ≡ ϒð10860Þ, and ϒ0 ≡ ϒðnSÞ=hb ≡ hbðmPÞ, respec-
tively. As always, one has

sþ tþ u ¼ m2
i þm2

f þ 2m2
π: ð29Þ

The chosen kinematics corresponds to considering
the amplitude Mðs; t; uÞ in a crossed channel, ϒðpiÞþ
ϒ0=hbðpfÞ → πþðpþÞ þ π−ðp−Þ. It proves convenient to
pass over to the center of mass frame of the pions in the
final state, so that their 4-momenta now read

p� ¼ ðωπ;�pπÞ: ð30Þ

In the given kinematics,

tðs; zÞ −m2
z ¼ −

1

2
ðYðs;mzÞ − kðsÞzÞ;

uðs; zÞ −m2
z ¼ −

1

2
ðYðs;mzÞ þ kðsÞzÞ; ð31Þ

where

Yðs;mzÞ ¼ s −m2
i −m2

f − 2m2
π þ 2m2

z ð32Þ

and
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FIG. 3. Left panel: the differential rates (in arbitrary units) of the dipion transitions ϒð10860Þ → ϒð1SÞππ (blue dashed line) and
ϒð10860Þ → ππhb (red solid line), as defined in Eq. (23) and normalized as given in Eq. (24). Right panel: the ratio (25) as a function of
the parameter r. The dashed lines pinpoint the values rphys ≈ 3 and RðrphysÞ ¼ 1. To ease the comparison, in this figure, the masses of
both quarkonia in the final states, ϒ0 and hb, are taken equal to 9.899 GeV (the mass of hbð1PÞ [19]).
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kðsÞ ¼ 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

i ; m
2
fÞλðs;m2

π; m2
πÞ

q
; ð33Þ

with λðm2
1; m

2
2; m

2
3Þ for the standard Källen triangle

function,

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: ð34Þ

Then, for z≡ cos θ (here θ is the angle between the
3-momenta pπ and pf) one finds

z ¼ t − u
kðsÞ : ð35Þ

C. Production amplitudes through Zbs

The amplitudes for the decays ϒð10860Þ → ππϒðnSÞ
and ϒð10860Þ → ππhbðmPÞ, which proceed through the
Zb and Z0

b, can now be written as

Mðϒ → ππϒ0Þ ¼ C0
ϒ0 ðϒ · ϒ0�Þ½GþðtÞ þGþðuÞ� ð36Þ

and

Mðϒ → ππhbÞ ¼ C0
hb
ðϒ · ½p̂π × h�b�Þ½G−ðtÞ −G−ðuÞ�;

ð37Þ

respectively, where p̂π ¼ pπ=pπ , G�, as before, include the
contributions from both Zb states [see Eq. (9)], and the
individual propagators of the Zbs read

G1ðτÞ ¼
1

τ −m2
z
; G2ðτÞ ¼

1

τ −m2
z0
; ð38Þ

with τ ¼ t, u. Here we absorbed all slowly varying
functions of momenta in the numerators into the normali-
zation constants and neglected the widths of the Zbs that do
not play a role for the argument. Indeed, as one can see
from the right plot in Fig. 3 [see also the discussion around
Eq. (21)], the function RðrÞ is almost constant at r > rphys
with the value of rphys quoted in Eq. (19). In other words,
to pinpoint the main difference between the asymptotic
(large-s) behavior of the functions Gþ and G−, it is safe to
take the limit of r → ∞ achieved for m0

z ≠ mz and
Γz → 0—see the definition of r in Eq. (12). We also note
that the effect of a finite width will be included in the full
calculation performed in Sec. IV D below.
A nontrivial difference in the production of the ϒ0 and hb

states can be seen directly from the expressions for G�ðτÞ
that read

GþðτÞ ¼
1

τ −m2
z
þ 1

τ −m0
z
2
¼ 2τ −m2

z −m0
z
2

ðτ −m2
zÞðτ −m0

z
2Þ ;

G−ðτÞ ¼
1

τ −m2
z
−

1

τ −m0
z
2
¼ m2

z −m0
z
2

ðτ −m2
zÞðτ −m0

z
2Þ : ð39Þ

First, one concludes thatG−ðτÞ has a milder UV behavior at
large τ [and therefore also at large s, by virtue of Eqs. (31)]
than GþðτÞ. Second, the result for G−ðτÞ obviously
vanishes in the strict HQSS limit, while GþðτÞ does not.
The interaction of the pions in the final state of the

reaction ϒð10860Þ → ππϒðnSÞ was studied in detail in
Ref. [24], where a dispersive approach was developed for
the Born amplitude

Mϒ
stableðt; u;mzÞ ¼

1

t −m2
z
þ 1

u −m2
z
: ð40Þ

In particular, the S-wave-projected amplitude with only
left-hand cuts was defined as

Mϒ;L
0;stableðs;mzÞ ¼

1

2

Z
1

−1
dzMϒ

stableðt; u;mzÞ ð41Þ

and found in a closed form, including anomalous pieces.
Given that the left-hand cut amplitude ML

0 is known, the
total amplitude including its part with the right-hand cuts
due to the ππ and KK̄ interaction in the final state can be
restored dispersively as

M̂0ðsÞ ¼ M̂L
0 ðsÞ þ Ω̂0ðsÞÎ0ðsÞ; ð42Þ

with

Î0ðsÞ ¼
1

π

Z
∞

4m2
π

ds0
Ω̂−1

0 ðs0ÞT̂ðs0Þσ̂ðs0ÞM̂L
0 ðs0Þ

s0 − s − i0
; ð43Þ

where Ω̂0ðsÞ is the multichannel Omnès matrix3 with
the hats indicating multicomponent objects (vectors and
matrices), σ̂ðsÞ ¼ diagfσπ; σKg is a diagonal matrix with
σPðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sthP=s

p
and sthP denoting the threshold in the

corresponding channel (P ¼ π, K). In particular, M̂L
0 ¼

ð½ML
0 �ππ; ½ML

0 �KKÞT . The S-wave meson-meson coupled-
channel amplitude T̂ can be parametrized by the ππ
scattering phase shift δðsÞ [32–35] as well as the absolute
value and phase of the ππ → KK̄ transition [34,35]. For the
reaction ϒ → ππϒ0 the leading contribution comes from
the Zb and Z0

b states, and thus one finds

M̂ϒ;L
0 ðsÞ ¼ Mϒ;L

0;stableðs;mzÞ þMϒ;L
0;stableðs;m0

zÞ: ð44Þ

3Since only isoscalars are considered in this work, the isospin
index of the Omnès matrix is omitted.
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Consider now the S-wave-projected amplitude for the hb
channel,

Mhb;L
0;stableðs;mzÞ ¼

1

2

Z
1

−1
zdzMhb

stableðt; u;mzÞ; ð45Þ

where the factor z under the integral comes from the
P-wave between the pions and the hb. According to
Eq. (37), the Born amplitude reads

Mhb
stableðt; u;mzÞ ¼

1

t −m2
z
−

1

u −m2
z
: ð46Þ

Since Mhb
stableðt; u;mzÞ ∝ ðt − uÞ ∝ z, the projection inte-

gral (45) is nonzero and can be expressed in terms of
Mϒ;L

0;stable from Eq. (41) as

Mhb;L
0;stableðs;mzÞ ¼

1

2

Z
dz

�
1

t −m2
z
−

1

u −m2
z

�
z

¼ 1

kðsÞ ð4þ Yðs;mzÞMϒ;L
0;stableðs;mzÞÞ: ð47Þ

Then, the full left-hand cut amplitude through the Zb and
Z0
b reads [cf. Eq. (44)]

M̂hb;L
0 ðsÞ ¼ Mhb;L

0;stableðs;mzÞ −Mhb;L
0;stableðs;m0

zÞ

¼ 1

κðsÞ ðYðs;mzÞMϒ;L
0;stableðs;mzÞ

−Yðs;m0
zÞMϒ;L

0;stableðs;m0
zÞÞ: ð48Þ

In contrast to the πϒ=πhb invariant mass distributions,
where the absolute values of the amplitudes are relevant
(see Sec. III), the evaluation of the dispersive integral in

Eq. (43) involves the Re and Im parts of the left-hand cut
amplitude M̂L

0 ðsÞ individually. In Fig. 4 we compare the Re
and Im parts of the S-wave-projected left-hand cut ampli-
tudes defined in Eqs. (44) and (48) for the ϒ and hb final
states, respectively. Because of a different interference, the
shapes of the amplitudes M̂ϒ;L

0 ðsÞ and M̂hb;L
0 ðsÞ are very

different, namely, while the contributions of the Zbð10610Þ
and Zbð10650Þ add up constructively in M̂ϒ;L

0 ðsÞ, they

interfere destructively in M̂hb;L
0 ðsÞ. It is therefore natural to

expect that the net ππ=KK̄ FSI contribution toϒð10860Þ →
ππhbðmPÞ, which violates HQSS, will be strongly
suppressed.
It was argued in Ref. [24] that the asymptotic behavior of

the S-wave projected left-hand cut amplitude Mϒ;L
0;stable is

M̂ϒ;L
0;stable ∝

s→∞

lnðsÞ
s

: ð49Þ

Then, one concludes from Eq. (48) that

M̂hb;L
0 ðsÞ ∝

s→∞
ðm2

z −m02
z Þ

lnðsÞ
s2

; ð50Þ

that is, in line with the argument around Eq. (39), the
transition amplitudes ϒð10860Þ → ππhbðmPÞ demonstrate
a better convergence than those for the ϒðnSÞ final states.
The analysis of the data on the transitions ϒð10860Þ →
ππϒðnSÞ with n ¼ 1, 2, 3 performed in Ref. [24] relied on
the twice subtracted dispersive integrals (43), see also
Refs. [23,36] for related discussions. Meanwhile, since
the convergence of similar integrals for the transitions
ϒð10860Þ → ππhbðmPÞ with m ¼ 1, 2 is better, it is
sufficient to employ only one subtraction,
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0.2 0.4 0.6 0.8
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(nSY )
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FIG. 4. Comparison of the S-wave-projected left-hand cut amplitudes via the Zbð10610Þ and Zbð10650Þ for the ϒ (blue dashed lines)
and hb (red solid lines) final states, defined by Eqs. (44) and (48), respectively. The figure shows that because of very different
interference patterns between the two Zb contributions (see especially the left panel), the resulting signal for the hb final state is much
smaller than the one in the ϒ channel, and will be further suppressed after “averaging” in the dispersive integral (43). To ease the
comparison, in this figure, the masses of both quarkonia in the final states, ϒ0 and hb, are taken equal to 9.899 GeV [the mass of
hbð1PÞ [19]].
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Î0ðsÞ¼ constþ s
π

Z
∞

4m2
π

ds0
Ω̂−1

0 ðs0ÞT̂ðs0Þσ̂ðs0ÞM̂L
0 ðs0Þ

s0ðs0− s− i0Þ : ð51Þ

Moreover, the form of the function G− ∝ ðm2
z0 −m2

zÞ
quoted in Eq. (39) implies that the corresponding HQSS-
breaking subtraction constant can be inferred in the form

const ¼ m2
z0 −m2

z

m2
z0 þm2

z
c; ð52Þ

where the mass-dependent factor sets the correct HQSS
scaling while the dimensionless constant c is expected to
take natural values of the order unity.

D. Data analysis

In this section we employ the dispersive approach
developed in the previous section to generalize the analysis
of the experimental data on the dipion transitions
ϒð10860Þ → πþπ−hbðmPÞ with m ¼ 1, 2 performed in
Ref. [28]. In particular, we check against the data that the
effect of the ππ FSI is small for a counterterm with a
strength in line with expectations from heavy quark spin
symmetry.
In order to proceed, we stick to the technique of the

spectral function previously employed in Ref. [24] to write

Mhb;L
0 ðsÞ ¼

Z
μ2max

μ2min

dμ2ρðμ2ÞMhb;L
0;stableðs; μÞ; ð53Þ

where the amplitude Mhb;L
0;stable for stable Zbs was defined in

the previous section while the integration limits are set as in

Ref. [24]. The spectral density function ρðμ2Þ can be
evaluated as

ρðμ2Þ ¼ −
1

π
ImUðμ2Þ; ð54Þ

with Uðμ2Þ referring to the production amplitude for
ϒð10860Þ → πþπ−hbðmPÞ built in Ref. [28] (fit A) via
the B�Bð�Þ-meson loops but without considering the ππ
FSI.4 Furthermore, since the latter effect is expected to be
small, we do not refit the data but employ all the parameters
found in Ref. [28] from the fit to the data and only check
how the line shapes change upon including the ππ FSI and
varying the HQSS-breaking constant (52) within an interval
consistent with naturalness. In particular, in Fig. 5 we
demonstrate the modification of the line shapes in the
channels πþπ−hbðmPÞ with m ¼ 1, 2 when the coefficient
c in Eq. (52) varies within a natural interval. For definite-
ness and keeping in mind that the values of c consistent
with naturalness should be jcj ∼ 1, we choose a
conservative interval jcj ≤ 10. Comparing the red band,
which shows the spread with the parameter c of the line
shapes with the ππ FSI included, and the black solid curve,
which represents the fit built in Ref. [28], one can conclude
that, in agreement with the arguments provided in this
section, the modification of the line shapes due to the
inclusion of the ππ interaction in the final state is marginal.
To be more quantitative, in terms of the χ2=Ndof this
corresponds to a spread from 1.21 to 1.36 as compared with
the value 1.29 obtained for the fit A from Ref. [28].

FIG. 5. Effect of the ππ=KK̄ FSI on the line shapes ϒð10860Þ → ππhbðmPÞ (m ¼ 1, 2). The solid black line shows the fitted line
shapes in the inelastic hbðmPÞπ channels built in Ref. [24] (see fit A) via the B�Bð�Þ-meson loops but without considering the ππ=KK̄
FSI. The experimental data are from Refs. [1,18]. The red band shows the effect of the ππ=KK̄ FSI on the line shapes when the
subtraction constant c [see the definition in Eq. (52)] is varied within the interval ½−10; 10�.

4The function Uðμ2Þ contains also the effect of the finite width
of the Zb states discussed above.
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Moreover, if c is allowed to vary freely, the best fit to
the data yields cð1PÞ ¼ 24 and cð2PÞ ¼ −24 with the
χ2=d:o:f: ¼ 1.16, which is only marginally smaller than the
lower bound within the natural interval (the red band in
Fig. 5). However, such values of the parameter c returned
by the best fit are formally somewhat larger than what we
regard as natural.
We note also, as a disclaimer, that the fit may use the

freedom of varying c to partly compensate for other
approximations made in the contact fit A of Ref. [28],
for example, the effect of the neglected one-pion exchange.
Since the resulting effect for the hb final states is small,
we do not dwell on this any further in this work. Although
the inclusion of the ππ=KK̄ FSI in an EFT approach with
nonperturbative pions (see, e.g., Ref. [28]) is technically
more demanding because of the additional left-hand cut
introduced in this way, this would be an important step in
the future more quantitative studies.

V. SUMMARY

In this work we investigate the consequences of heavy-
quark spin symmetry and the pattern of its breaking for the

measured decays ϒð10860Þ → πZð0Þ
b → ππϒðnSÞ (n ¼ 1,

2, 3) and ϒð10860Þ → πZð0Þ
b → ππhbðmPÞ (m ¼ 1, 2).

These decays appear to have nearly equal probabilities in
spite of the fact that a direct transition from Sbb̄ ¼ 1
ϒð10860Þ to Sbb̄ ¼ 0 hbðmPÞ changes heavy-quark spin
and therefore violates HQSS. As argued in Ref. [21],
this can be naturally understood in the molecular scenario
for the Zb states, because in this case Zbð10610Þ and
Zbð10650Þ appear as orthogonal combinations of the
Sbb̄ ¼ 0 and Sbb̄ ¼ 1 components of equal strength. On
the other hand, the interference between the contributions
of the Zbð10610Þ and Zbð10650Þ to the decay amplitude for
a ππhb final state is destructive which results in a vanishing
signal in the strict HQSS limit. In contrast to this, the signal
for a ππϒ final state is fully in line with HQSS due to a
constructive interference between the two Zb states. Thus,
in order to have signals of a similar strength in the ππϒ and
ππhb final states, HQSS in the latter channel must be
violated (mz0 −mz ≠ 0), and this violation should be bal-
anced by another quantity with dimension of a mass of a
similar (small) size. We demonstrate that this balance is
provided by the small widths of the Zb states Γz. As a
consequence, the transition amplitude to the ππhb final
state strongly depends on the ratio of these two scales,
r ¼ ðm0

z −mzÞ=Γz, as given in Eqs. (11) and (12).
Remarkably, while the ratio r vanishes in the strict
HQSS limit, its value rphys ≈ 3 obtained for the physical
masses of the Zbs corresponds to the dynamical regime,
which is already quite close to the opposite limit of r → ∞;
in this limit the absolute values of the transition amplitudes

to the ππϒ and ππhb final states are shown to have exactly
the same peak positions and strengths.
Also, we pinpoint a crucial difference related to HQSS in

the role played by the ππ=KK̄ FSI in the dipion transitions

ϒð10860Þ → πZð0Þ
b → ππϒðnSÞ and ϒð10860Þ → πZð0Þ

b →
ππhbðmPÞ. We demonstrate how the absence of the direct
short-range HQSS-conserving operators in the bottomo-
nium transitions ϒð10860Þ → ππhbðmPÞ can be reconciled
with a subtraction in the dispersive integral if the ππ=KK̄
FSI is taken into account. In particular, it is shown that
when both Zb states are included simultaneously, their
leading contributions to the total amplitude cancel against
each other. As a result, the dispersive integrals in the ππhb
channels demonstrate a better convergence than those in the
ππϒ channels and the remaining subtraction constants in
the ππhb amplitudes are indeed suppressed by HQSS. We
have verified that, in agreement with natural expectations,
implementing this scheme to take into account the ππ=KK̄
FSI does not result in any appreciable change in the fitted
line shapes in the ππhbð1PÞ and ππhbð2PÞ channels
[contrary to the crucial role played by the ππ=KK̄ FSI
in the ππϒðnSÞ channels], so that neglecting the ππ=KK̄
FSI in the previous analysis of Refs. [28,31] is indeed
justified, at least at the present level of accuracy dictated by
the quality of the existing data. Meanwhile, our findings
establish a way to improve on such an analysis when/if
such improvements are finally called for by the experiment.
As a final remark, we notice that while the numerical

analysis performed in this work relies on a particular fit to
the data built in the framework of the molecular approach
for the Zbs, the qualitative arguments presented in this
paper are solely based on the interplay of different scales
(the mass splitting mz0 −mz and the width Γz in the first
place) and therefore can equally apply to any approach to
the Zbs that is consistent with HQSS and its leading
breaking effects, in particular, to the tetraquark model.
Our findings concerning the role played by the ππ=KK̄

FSI should be also important for understanding analogous
charmonium transitions to the final states ππψðnSÞ and
ππhcðmPÞ via the Zcð3900Þ and Zcð4020Þ states, though
the effects of the HQSS violation in the charmonium sector
are expected to be larger.
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