000972163 001__ 972163
000972163 005__ 20230210201822.0
000972163 037__ $$aFZJ-2023-01107
000972163 041__ $$aEnglish
000972163 1001_ $$0P:(DE-Juel1)173944$$aLan, Qianqian$$b0$$ufzj
000972163 1112_ $$a48th Conference on the Physics and Chemistry of Surfaces and Interfaces$$cLos Angeles$$d2023-01-15 - 2023-01-19$$gPCSI 48$$wUSA
000972163 245__ $$aElectrostatic shaping of magnetic transition regions in La0.7Sr0.3MnO3
000972163 260__ $$c2023
000972163 3367_ $$033$$2EndNote$$aConference Paper
000972163 3367_ $$2DataCite$$aOther
000972163 3367_ $$2BibTeX$$aINPROCEEDINGS
000972163 3367_ $$2DRIVER$$aconferenceObject
000972163 3367_ $$2ORCID$$aLECTURE_SPEECH
000972163 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1676026482_23897$$xPlenary/Keynote
000972163 520__ $$aWe report a magnetic transition region in La0.7Sr0.3MnO3 with gradually changing magnitude of magnetization, but no rotation, stable at all temperatures below TC. Spatially-resolved magnetization, composition and Mn valence data reveal that the magnetic transition region is induced by a subtle Mn composition change, leading to a charge transfer at the interface due to carrier diffusion and drift. The electrostatic shaping of the magnetic transition region is mediated by the Mn valence which affects both, magnetization by Mn3+-Mn4+ double exchange interaction and free carrier concentration.
000972163 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000972163 7001_ $$0P:(DE-HGF)0$$aWang, C.$$b1
000972163 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b2$$ufzj
000972163 7001_ $$0P:(DE-Juel1)143949$$aSchnedler, Michael$$b3$$ufzj
000972163 7001_ $$0P:(DE-Juel1)176471$$aFreter, Lars$$b4$$ufzj
000972163 7001_ $$0P:(DE-HGF)0$$aFischer, Kurt$$b5
000972163 7001_ $$0P:(DE-Juel1)130627$$aEbert, Philipp$$b6$$eCorresponding author$$ufzj
000972163 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b7$$ufzj
000972163 909CO $$ooai:juser.fz-juelich.de:972163$$pVDB
000972163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173944$$aForschungszentrum Jülich$$b0$$kFZJ
000972163 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDepartment of Physics, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China$$b1
000972163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b2$$kFZJ
000972163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b3$$kFZJ
000972163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176471$$aForschungszentrum Jülich$$b4$$kFZJ
000972163 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDepartment of Mechanical and Electrical Engineering, National Institute of Technology, Tokuyama College, Gakuendai, Shunan, Yamaguchi, 745-8585, Japan$$b5
000972163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b6$$kFZJ
000972163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
000972163 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000972163 9141_ $$y2023
000972163 920__ $$lyes
000972163 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000972163 980__ $$aconf
000972163 980__ $$aVDB
000972163 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000972163 980__ $$aUNRESTRICTED