000000973 001__ 973
000000973 005__ 20180208214705.0
000000973 0247_ $$2DOI$$a10.1016/j.soilbio.2008.07.024
000000973 0247_ $$2WOS$$aWOS:000261007600009
000000973 037__ $$aPreJuSER-973
000000973 041__ $$aeng
000000973 082__ $$a570
000000973 084__ $$2WoS$$aSoil Science
000000973 1001_ $$0P:(DE-Juel1)VDB62716$$aBauer, J.$$b0$$uFZJ
000000973 245__ $$aTemperature response of wheat decomposition is more complex than the common approaches of most multi-pool models
000000973 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2008
000000973 300__ $$a2780 - 2786
000000973 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000973 3367_ $$2DataCite$$aOutput Types/Journal article
000000973 3367_ $$00$$2EndNote$$aJournal Article
000000973 3367_ $$2BibTeX$$aARTICLE
000000973 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000973 3367_ $$2DRIVER$$aarticle
000000973 440_0 $$08461$$aSoil Biology and Biochemistry$$v40$$x0038-0717$$y11
000000973 500__ $$aRecord converted from VDB: 12.11.2012
000000973 520__ $$aThe temperature response of heterotrophic soil respiration is crucial for a reliable prediction of carbon dynamics in response to climatic changes. Most multi-pool models describe the temperature dependence of carbon decomposition by a response function which uniformly scales the decomposition constants of all carbon pools. However, it is not clear whether the temperature response does, indeed, conform to such a simple formulation. In this study, we analysed measured CO2 efflux from wheat decomposition experiments under six different temperatures (5, 9, 15, 25, 35 and 45 degrees C). Data were interpreted by assuming that litter could be sub-divided into two pools, a labile and a more recalcitrant one, that would each decay exponentially. We found that the observed patterns of carbon loss were poorly described if we used the same relative temperature response functions for the decomposition of both pools and assumed the same chemical recalcitrance (expressed as the ratio of labile and recalcitrant pool sizes) at all temperatures. Data prediction could be significantly improved by using different temperature response functions for the decomposition of the two different organic matter fractions. Even better data prediction could be achieved by assuming that chemical recalcitrance varied with temperature. The data could also be well described by the more sophisticated carbon-dynamic models RothC and CenW/CENTURY, again, provided that the ratio of litter fractions in the initial input material was modified with temperature. Our findings thus suggest that the temperature dependence of organic matter decomposition cannot be fully described with the simple approaches usually employed but that there is a more complicated interplay between the temperature dependence of decomposition rates and temperature effects on the chemical recalcitrance of different organic matter fractions. (c) 2008 Elsevier Ltd. All rights reserved.
000000973 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000000973 588__ $$aDataset connected to Web of Science
000000973 650_7 $$2WoSType$$aJ
000000973 65320 $$2Author$$aCENTURY
000000973 65320 $$2Author$$aCenW
000000973 65320 $$2Author$$aDecomposition
000000973 65320 $$2Author$$aExponential decay
000000973 65320 $$2Author$$aRothC
000000973 65320 $$2Author$$aSoil carbon
000000973 65320 $$2Author$$aTemperature
000000973 65320 $$2Author$$aTemperature dependence
000000973 65320 $$2Author$$aC-14-carbon
000000973 7001_ $$0P:(DE-HGF)0$$aKirschbaum, M. U. F.$$b1
000000973 7001_ $$0P:(DE-Juel1)VDB17057$$aWeihermüller, L.$$b2$$uFZJ
000000973 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J. A.$$b3$$uFZJ
000000973 7001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b4$$uFZJ
000000973 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b5$$uFZJ
000000973 773__ $$0PERI:(DE-600)1498740-5$$a10.1016/j.soilbio.2008.07.024$$gVol. 40, p. 2780 - 2786$$p2780 - 2786$$q40<2780 - 2786$$tSoil biology & biochemistry$$v40$$x0038-0717$$y2008
000000973 8567_ $$uhttp://dx.doi.org/10.1016/j.soilbio.2008.07.024
000000973 909CO $$ooai:juser.fz-juelich.de:973$$pVDB
000000973 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000000973 9141_ $$y2008
000000973 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000973 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000000973 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000000973 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000000973 970__ $$aVDB:(DE-Juel1)101788
000000973 980__ $$aVDB
000000973 980__ $$aConvertedRecord
000000973 980__ $$ajournal
000000973 980__ $$aI:(DE-Juel1)IBG-3-20101118
000000973 980__ $$aI:(DE-82)080011_20140620
000000973 980__ $$aI:(DE-Juel1)VDB1045
000000973 980__ $$aUNRESTRICTED
000000973 981__ $$aI:(DE-Juel1)IBG-3-20101118
000000973 981__ $$aI:(DE-Juel1)VDB1045
000000973 981__ $$aI:(DE-Juel1)VDB1047