000009731 001__ 9731 000009731 005__ 20240712100906.0 000009731 0247_ $$2DOI$$a10.1029/2010JD014343 000009731 0247_ $$2WOS$$aWOS:000286325000001 000009731 0247_ $$2ISSN$$a0141-8637 000009731 0247_ $$2Handle$$a2128/20452 000009731 037__ $$aPreJuSER-9731 000009731 041__ $$aeng 000009731 082__ $$a550 000009731 084__ $$2WoS$$aMeteorology & Atmospheric Sciences 000009731 1001_ $$0P:(DE-Juel1)VDB72464$$aKunz, A.$$b0$$uFZJ 000009731 245__ $$aDynamical tropopause based on isentropic PV gradients 000009731 260__ $$aWashington, DC$$bUnion$$c2011 000009731 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000009731 3367_ $$2DataCite$$aOutput Types/Journal article 000009731 3367_ $$00$$2EndNote$$aJournal Article 000009731 3367_ $$2BibTeX$$aARTICLE 000009731 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000009731 3367_ $$2DRIVER$$aarticle 000009731 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v116$$x0148-0227$$yD01110 000009731 500__ $$3POF3_Assignment on 2016-02-29 000009731 500__ $$aThis work is supported in part by EOS, a program of the Helmholtz Association of German Research Centres, and by the German Academy of Sciences Leopoldina (support code LPDS 2009-25). Thanks go to Heini Wernli and two anonymous reviewers for their constructive criticisms. We further thank Thomas Birner, Leigh Munchak, Jeffrey Taylor, and Juan Antonio Anel for their helpful comments on an earlier version of the manuscript. 000009731 520__ $$aSince its inception, the dynamical tropopause based on potential vorticity (PV) is identified by the PV gradient on isentropes. Conceptually, significant isentropic gradients shown on the middle world PV maps reflect the underlying transport barrier associated with the tropopause, formed by jet streams that separate tropospheric air masses at low latitudes and stratospheric air masses at high latitudes. Largely owing to the lack of a general method, the dynamical tropopause has often been represented by a PV value chosen ad hoc without any temporal or spatial differentiation. In this work, we present a method for determining the PV isoline of the dynamical tropopause based on the isentropic PV gradients. Using 1 year of data from the European Centre for Medium-Range Weather Forecasts, the spatial and temporal variability of this PV gradient-based dynamical tropopause is examined. The results show that in general there is a broad distribution of PV values at the dynamical tropopause, ranging from 1.5 to 5 potential vorticity units. Therefore, a fixed PV surface for all isentropes and seasons does not accurately represent the location of the "tropopause barrier." The PV at the dynamical tropopause increases with increasing potential temperature. This increase is more pronounced in the Southern Hemisphere than in the Northern Hemisphere. The seasonal cycle shows higher PV values at the dynamical tropopause during summer than during winter. This seasonal cycle is larger on higher isentropes. The dispersion of the PV at the dynamical tropopause about its mean is twofold larger during summer and autumn than during winter and spring in both hemispheres. 000009731 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0 000009731 588__ $$aDataset connected to Web of Science 000009731 650_7 $$2WoSType$$aJ 000009731 7001_ $$0P:(DE-Juel1)129130$$aKonopka, P.$$b1$$uFZJ 000009731 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b2$$uFZJ 000009731 7001_ $$0P:(DE-HGF)0$$aPan, L.L.$$b3 000009731 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2010JD014343$$gVol. 116$$q116$$tJournal of geophysical research / Atmospheres$$tJournal of Geophysical Research$$v116$$x0148-0227$$y2011 000009731 8567_ $$uhttp://dx.doi.org/10.1029/2010JD014343 000009731 8564_ $$uhttps://juser.fz-juelich.de/record/9731/files/2010JD014343.pdf$$yOpenAccess 000009731 8564_ $$uhttps://juser.fz-juelich.de/record/9731/files/2010JD014343.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000009731 909CO $$ooai:juser.fz-juelich.de:9731$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire 000009731 9141_ $$y2011 000009731 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000009731 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000009731 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000009731 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000009731 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000009731 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review 000009731 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000009731 9131_ $$0G:(DE-Juel1)FUEK491$$aDE-HGF$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22 000009731 9132_ $$0G:(DE-HGF)POF3-249H$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vAddenda$$x0 000009731 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$gIEK$$kIEK-7$$lStratosphäre$$x1 000009731 970__ $$aVDB:(DE-Juel1)119709 000009731 9801_ $$aFullTexts 000009731 980__ $$aVDB 000009731 980__ $$aConvertedRecord 000009731 980__ $$ajournal 000009731 980__ $$aI:(DE-Juel1)IEK-7-20101013 000009731 980__ $$aUNRESTRICTED 000009731 981__ $$aI:(DE-Juel1)ICE-4-20101013