000009748 001__ 9748
000009748 005__ 20200402205832.0
000009748 0247_ $$2pmid$$apmid:20382112
000009748 0247_ $$2DOI$$a10.1016/j.bbrc.2010.04.043
000009748 0247_ $$2WOS$$aWOS:000277801200026
000009748 037__ $$aPreJuSER-9748
000009748 041__ $$aeng
000009748 082__ $$a570
000009748 084__ $$2WoS$$aBiochemistry & Molecular Biology
000009748 084__ $$2WoS$$aBiophysics
000009748 1001_ $$0P:(DE-HGF)0$$aSchwarten, M.$$b0
000009748 245__ $$aSolution structure of Atg8 reveals conformational polymorphism of the N-terminal domain
000009748 260__ $$aOrlando, Fla.$$bAcademic Press$$c2010
000009748 300__ $$a426 - 431
000009748 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009748 3367_ $$2DataCite$$aOutput Types/Journal article
000009748 3367_ $$00$$2EndNote$$aJournal Article
000009748 3367_ $$2BibTeX$$aARTICLE
000009748 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009748 3367_ $$2DRIVER$$aarticle
000009748 440_0 $$0787$$aBiochemical and Biophysical Research Communications$$v395$$x0006-291X$$y7
000009748 500__ $$aWe thank Sameer Singh for carefully reading the manuscript as well as Clara Gruning, Justin Lecher and Sven Schunke for helpful discussions. This study was supported by a fellowship of the International Helmholtz Research School of Biophysics and Soft Matter (IHRS BioSoft) to M. Schwarten and a research Grant from the Deutsche Forschungsgemeinschaft (DFG) to D. Willbold (Wi1472/5).
000009748 520__ $$aDuring autophagy a crescent shaped like membrane is formed, which engulfs the material that is to be degraded. This membrane grows further until its edges fuse to form the double membrane covered autophagosome. Atg8 is a protein, which is required for this initial step of autophagy. Therefore, a multistage conjugation process of newly synthesized Atg8 to phosphatidylethanolamine is of critical importance. Here we present the high resolution structure of unprocessed Atg8 determined by nuclear magnetic resonance spectroscopy. Its C-terminal subdomain shows a well-defined ubiquitin-like fold with slightly elevated mobility in the pico- to nanosecond timescale as determined by heteronuclear NOE data. In comparison to unprocessed Atg8, cleaved Atg8(G116) shows a decreased mobility behaviour. The N-terminal domain adopts different conformations within the micro- to millisecond timescale. The possible biological relevance of the differences in dynamic behaviours between both subdomains as well as between the cleaved and uncleaved forms is discussed.
000009748 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems$$cP33$$x0
000009748 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x1
000009748 588__ $$aDataset connected to Web of Science, Pubmed
000009748 65320 $$2Author$$aAtg8
000009748 65320 $$2Author$$aAutophagy
000009748 65320 $$2Author$$aNMR spectroscopy
000009748 65320 $$2Author$$aDynamics
000009748 65320 $$2Author$$aGABARAP-like family
000009748 65320 $$2Author$$aOligomerization
000009748 650_2 $$2MeSH$$aAutophagy
000009748 650_2 $$2MeSH$$aMicrotubule-Associated Proteins: chemistry
000009748 650_2 $$2MeSH$$aNuclear Magnetic Resonance, Biomolecular
000009748 650_2 $$2MeSH$$aProtein Folding
000009748 650_2 $$2MeSH$$aProtein Structure, Tertiary
000009748 650_2 $$2MeSH$$aSaccharomyces cerevisiae: chemistry
000009748 650_2 $$2MeSH$$aSaccharomyces cerevisiae: physiology
000009748 650_2 $$2MeSH$$aSaccharomyces cerevisiae Proteins: chemistry
000009748 650_2 $$2MeSH$$aUbiquitin: chemistry
000009748 650_7 $$00$$2NLM Chemicals$$aATG8 protein, S cerevisiae
000009748 650_7 $$00$$2NLM Chemicals$$aMicrotubule-Associated Proteins
000009748 650_7 $$00$$2NLM Chemicals$$aSaccharomyces cerevisiae Proteins
000009748 650_7 $$00$$2NLM Chemicals$$aUbiquitin
000009748 650_7 $$2WoSType$$aJ
000009748 7001_ $$0P:(DE-HGF)0$$aStoldt, M.$$b1
000009748 7001_ $$0P:(DE-Juel1)132012$$aMohrlüder, J.$$b2$$uFZJ
000009748 7001_ $$0P:(DE-Juel1)132029$$aWillbold, D.$$b3$$uFZJ
000009748 773__ $$0PERI:(DE-600)1461396-7$$a10.1016/j.bbrc.2010.04.043$$gVol. 395, p. 426 - 431$$p426 - 431$$q395<426 - 431$$tBiochemical and biophysical research communications$$v395$$x0006-291X$$y2010
000009748 909CO $$ooai:juser.fz-juelich.de:9748$$pVDB
000009748 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009748 9141_ $$y2010
000009748 9131_ $$0G:(DE-Juel1)FUEK409$$aDE-HGF$$bGesundheit$$kP33$$lFunktion und Dysfunktion des Nervensystems$$vFunktion und Dysfunktion des Nervensystems$$x0
000009748 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x1
000009748 9201_ $$0I:(DE-Juel1)VDB942$$d31.12.2010$$gISB$$kISB-3$$lStrukturbiochemie$$x0
000009748 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x1
000009748 970__ $$aVDB:(DE-Juel1)119739
000009748 980__ $$aVDB
000009748 980__ $$aConvertedRecord
000009748 980__ $$ajournal
000009748 980__ $$aI:(DE-Juel1)ICS-6-20110106
000009748 980__ $$aI:(DE-82)080012_20140620
000009748 980__ $$aUNRESTRICTED
000009748 981__ $$aI:(DE-Juel1)IBI-7-20200312
000009748 981__ $$aI:(DE-Juel1)ICS-6-20110106
000009748 981__ $$aI:(DE-Juel1)VDB1346