000009822 001__ 9822
000009822 005__ 20250314084057.0
000009822 0247_ $$2DOI$$a10.1002/cpe.1585
000009822 0247_ $$2WOS$$aWOS:000283958700003
000009822 037__ $$aPreJuSER-9822
000009822 041__ $$aeng
000009822 082__ $$a004
000009822 084__ $$2WoS$$aComputer Science, Software Engineering
000009822 084__ $$2WoS$$aComputer Science, Theory & Methods
000009822 1001_ $$0P:(DE-Juel1)132199$$aMohr, B.$$b0$$uFZJ
000009822 245__ $$aPerformance measurement and analysis tools for extremely scalable systems
000009822 260__ $$aChichester$$bWiley$$c2010
000009822 300__ $$a2212 - 2229
000009822 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009822 3367_ $$2DataCite$$aOutput Types/Journal article
000009822 3367_ $$00$$2EndNote$$aJournal Article
000009822 3367_ $$2BibTeX$$aARTICLE
000009822 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009822 3367_ $$2DRIVER$$aarticle
000009822 440_0 $$017301$$aConcurrency and Computation: Practice and Experience$$v22$$x1532-0626$$y16
000009822 500__ $$aRecord converted from VDB: 12.11.2012
000009822 520__ $$aHigh-performance computing systems continue to employ more and more processor cores. Current typical high-end machines in industry, university, and government research laboratory computing centers feature thousands of computing cores. While these machines promise ever more compute power and memory capacity to tackle today's complex simulation problems, they force application developers to greatly enhance the scalability of their codes to be able to exploit it. To better support them in their porting and tuning process, many parallel-tools research groups have already started to work on scaling their methods, techniques, and tools to extreme processor counts. In this paper, we survey existing profiling and tracing tools, report on our experience in using them in extreme scaling environments, review working and promising new methods and techniques, and discuss strategies for solving open issues and problems. Copyright (C) 2010 John Wiley & Sons, Ltd.
000009822 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000009822 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000009822 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x2
000009822 588__ $$aDataset connected to Web of Science
000009822 650_7 $$2WoSType$$aJ
000009822 65320 $$2Author$$aperformance analysis
000009822 65320 $$2Author$$aparallel programming
000009822 65320 $$2Author$$ascalability
000009822 7001_ $$0P:(DE-Juel1)132302$$aWylie, B.J.N.$$b1$$uFZJ
000009822 7001_ $$0P:(DE-Juel1)VDB1927$$aWolf, F.$$b2$$uFZJ
000009822 773__ $$0PERI:(DE-600)2052606-4$$a10.1002/cpe.1585$$gVol. 22, p. 2212 - 2229$$p2212 - 2229$$q22<2212 - 2229$$tConcurrency and computation$$v22$$x1532-0626$$y2010
000009822 8567_ $$uhttp://dx.doi.org/10.1002/cpe.1585
000009822 909CO $$ooai:juser.fz-juelich.de:9822$$pVDB
000009822 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000009822 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000009822 9141_ $$y2010
000009822 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009822 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000009822 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x1
000009822 970__ $$aVDB:(DE-Juel1)119915
000009822 980__ $$aVDB
000009822 980__ $$aConvertedRecord
000009822 980__ $$ajournal
000009822 980__ $$aI:(DE-Juel1)JSC-20090406
000009822 980__ $$aI:(DE-82)080012_20140620
000009822 980__ $$aUNRESTRICTED
000009822 981__ $$aI:(DE-Juel1)VDB1346