000996121 001__ 996121
000996121 005__ 20230929112511.0
000996121 0247_ $$2doi$$a10.1103/PhysRevApplied.19.024047
000996121 0247_ $$2ISSN$$a2331-7019
000996121 0247_ $$2ISSN$$a2331-7043
000996121 0247_ $$2Handle$$a2128/34088
000996121 0247_ $$2WOS$$aWOS:000936544700002
000996121 037__ $$aFZJ-2023-01121
000996121 082__ $$a530
000996121 1001_ $$0P:(DE-Juel1)174485$$aJattana, Manpreet Singh$$b0$$ufzj
000996121 245__ $$aImproved Variational Quantum Eigensolver Via Quasidynamical Evolution
000996121 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2023
000996121 3367_ $$2DRIVER$$aarticle
000996121 3367_ $$2DataCite$$aOutput Types/Journal article
000996121 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678280362_3810
000996121 3367_ $$2BibTeX$$aARTICLE
000996121 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000996121 3367_ $$00$$2EndNote$$aJournal Article
000996121 520__ $$aThe variational quantum eigensolver (VQE) is a hybrid quantum classical algorithm designed for current and near-term quantum devices. Despite its initial success, there is a lack of understanding involving several of its key aspects. There are problems with VQE that forbid a favorable scaling towards quantum advantage. In order to alleviate the problems, we propose and extensively test a quantum annealing inspired heuristic that supplements VQE. The improved VQE enables an efficient initial state-preparation mechanism, in a recursive manner, for a quasidynamical unitary evolution. We conduct an in-depth scaling analysis of finding the ground-state energies with increasing lattice sizes of the Heisenberg model, employing simulations of up to 40 qubits that manipulate the complete state vector. In addition to systematically finding the ground-state energy, we observe that it avoids barren plateaus, escapes local minima, and works with low-depth circuits. For the current devices, we further propose a benchmarking toolkit using a mean-field model and test it on IBM Q devices. Realistic gate execution times estimate a longer computational time to complete the same computation on a fully functional error-free quantum computer than on a quantum computer emulator implemented on a classical computer. However, our proposal can be expected to help accurate estimations of the ground-state energies beyond 50 qubits when the complete state vector can no longer be stored on a classical computer, thus enabling quantum advantage.
000996121 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000996121 536__ $$0G:(EU-Grant)820363$$aOpenSuperQ - An Open Superconducting Quantum Computer (820363)$$c820363$$fH2020-FETFLAG-2018-03$$x1
000996121 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x2
000996121 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000996121 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1$$ufzj
000996121 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b2$$ufzj
000996121 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3$$eCorresponding author$$ufzj
000996121 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.19.024047$$gVol. 19, no. 2, p. 024047$$n2$$p024047$$tPhysical review applied$$v19$$x2331-7019$$y2023
000996121 8564_ $$uhttps://juser.fz-juelich.de/record/996121/files/Invoice_INV_23_JAN_010262.pdf
000996121 8564_ $$uhttps://juser.fz-juelich.de/record/996121/files/PhysRevApplied.19.024047.pdf$$yOpenAccess
000996121 8767_ $$8INV/23/JAN/010262$$92023-01-25$$a1200190474$$d2023-02-07$$eHybrid-OA$$jZahlung erfolgt$$zUSD 2625,-
000996121 909CO $$ooai:juser.fz-juelich.de:996121$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000996121 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174485$$aForschungszentrum Jülich$$b0$$kFZJ
000996121 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
000996121 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b2$$kFZJ
000996121 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
000996121 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000996121 9141_ $$y2023
000996121 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000996121 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000996121 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000996121 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000996121 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000996121 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000996121 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2022$$d2023-08-25
000996121 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
000996121 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
000996121 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
000996121 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
000996121 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
000996121 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
000996121 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000996121 980__ $$ajournal
000996121 980__ $$aVDB
000996121 980__ $$aUNRESTRICTED
000996121 980__ $$aI:(DE-Juel1)JSC-20090406
000996121 980__ $$aAPC
000996121 9801_ $$aAPC
000996121 9801_ $$aFullTexts