001     996121
005     20230929112511.0
024 7 _ |a 10.1103/PhysRevApplied.19.024047
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 2128/34088
|2 Handle
024 7 _ |a WOS:000936544700002
|2 WOS
037 _ _ |a FZJ-2023-01121
082 _ _ |a 530
100 1 _ |a Jattana, Manpreet Singh
|0 P:(DE-Juel1)174485
|b 0
|u fzj
245 _ _ |a Improved Variational Quantum Eigensolver Via Quasidynamical Evolution
260 _ _ |a College Park, Md. [u.a.]
|c 2023
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1678280362_3810
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The variational quantum eigensolver (VQE) is a hybrid quantum classical algorithm designed for current and near-term quantum devices. Despite its initial success, there is a lack of understanding involving several of its key aspects. There are problems with VQE that forbid a favorable scaling towards quantum advantage. In order to alleviate the problems, we propose and extensively test a quantum annealing inspired heuristic that supplements VQE. The improved VQE enables an efficient initial state-preparation mechanism, in a recursive manner, for a quasidynamical unitary evolution. We conduct an in-depth scaling analysis of finding the ground-state energies with increasing lattice sizes of the Heisenberg model, employing simulations of up to 40 qubits that manipulate the complete state vector. In addition to systematically finding the ground-state energy, we observe that it avoids barren plateaus, escapes local minima, and works with low-depth circuits. For the current devices, we further propose a benchmarking toolkit using a mean-field model and test it on IBM Q devices. Realistic gate execution times estimate a longer computational time to complete the same computation on a fully functional error-free quantum computer than on a quantum computer emulator implemented on a classical computer. However, our proposal can be expected to help accurate estimations of the ground-state energies beyond 50 qubits when the complete state vector can no longer be stored on a classical computer, thus enabling quantum advantage.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a OpenSuperQ - An Open Superconducting Quantum Computer (820363)
|0 G:(EU-Grant)820363
|c 820363
|f H2020-FETFLAG-2018-03
|x 1
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 1
|u fzj
700 1 _ |a De Raedt, Hans
|0 P:(DE-Juel1)179169
|b 2
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1103/PhysRevApplied.19.024047
|g Vol. 19, no. 2, p. 024047
|0 PERI:(DE-600)2760310-6
|n 2
|p 024047
|t Physical review applied
|v 19
|y 2023
|x 2331-7019
856 4 _ |u https://juser.fz-juelich.de/record/996121/files/Invoice_INV_23_JAN_010262.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/996121/files/PhysRevApplied.19.024047.pdf
909 C O |o oai:juser.fz-juelich.de:996121
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174485
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179169
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21