000996126 001__ 996126 000996126 005__ 20230228121556.0 000996126 0247_ $$2doi$$a10.1021/jacs.2c02850 000996126 0247_ $$2ISSN$$a0002-7863 000996126 0247_ $$2ISSN$$a1520-5126 000996126 0247_ $$2ISSN$$a1943-2984 000996126 0247_ $$2Handle$$a2128/33865 000996126 0247_ $$2pmid$$a35919985 000996126 0247_ $$2WOS$$aWOS:000835696600001 000996126 037__ $$aFZJ-2023-01123 000996126 082__ $$a540 000996126 1001_ $$0P:(DE-Juel1)194492$$aRezaei-Ghaleh, Nasrollah$$b0$$eCorresponding author 000996126 245__ $$aResponse to Comment on “Following Molecular Mobility during Chemical Reactions: No Evidence for Active Propulsion” and “Molecular Diffusivity of Click Reaction Components: The Diffusion Enhancement Question” 000996126 260__ $$aWashington, DC$$bACS Publications$$c2022 000996126 3367_ $$2DRIVER$$aarticle 000996126 3367_ $$2DataCite$$aOutput Types/Journal article 000996126 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675926532_11053 000996126 3367_ $$2BibTeX$$aARTICLE 000996126 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000996126 3367_ $$00$$2EndNote$$aJournal Article 000996126 520__ $$aIn their Comment (DOI: 10.1021/jacs.2c02965) on two related publications by our group (J. Am. Chem. Soc. 2022,144, 1380−1388; DOI: 10.1021/jacs.1c11754) and another (J. Am. Chem. Soc. 2021, 143, 20884−20890; DOI: 10.1021/jacs.1c09455), Huang and Granick refer to the diffusion NMR measurements of molecules during a copper-catalyzed azide−alkyne cycloaddition (CuAAC) “click” reaction. Here we respond to their comments and maintain that no measurable diffusion enhancement was observed during the reaction. We expand on the physical arguments presented in our original JACS Article regarding the appropriate reference state for the diffusion coefficient and present new data showing that the use of other reference states, as suggested by Huang and Granick, will still support our conclusion that the two reactants and one product of the CuAAC reaction do not exhibit boosted mobility during the reaction. 000996126 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0 000996126 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000996126 7001_ $$0P:(DE-HGF)0$$aAgudo-Canalejo, Jaime$$b1 000996126 7001_ $$00000-0002-1266-4344$$aGriesinger, Christian$$b2 000996126 7001_ $$00000-0002-3149-4002$$aGolestanian, Ramin$$b3$$eCorresponding author 000996126 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.2c02850$$gVol. 144, no. 30, p. 13441 - 13445$$n30$$p13441 - 13445$$tJournal of the American Chemical Society$$v144$$x0002-7863$$y2022 000996126 8564_ $$uhttps://juser.fz-juelich.de/record/996126/files/ja2c02850.pdf$$yOpenAccess 000996126 909CO $$ooai:juser.fz-juelich.de:996126$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000996126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194492$$aForschungszentrum Jülich$$b0$$kFZJ 000996126 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0 000996126 9141_ $$y2022 000996126 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bJ AM CHEM SOC : 2021$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2021$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000996126 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2022-11-09 000996126 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09 000996126 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000996126 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-09$$wger 000996126 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09 000996126 920__ $$lyes 000996126 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0 000996126 980__ $$ajournal 000996126 980__ $$aVDB 000996126 980__ $$aI:(DE-Juel1)IBI-7-20200312 000996126 980__ $$aUNRESTRICTED 000996126 9801_ $$aFullTexts