000996128 001__ 996128
000996128 005__ 20230228121556.0
000996128 0247_ $$2doi$$a10.1016/j.jbc.2022.101662
000996128 0247_ $$2ISSN$$a0021-9258
000996128 0247_ $$2ISSN$$a1067-8816
000996128 0247_ $$2ISSN$$a1083-351X
000996128 0247_ $$2Handle$$a2128/33861
000996128 0247_ $$2pmid$$a35104501
000996128 0247_ $$2WOS$$aWOS:000794865600002
000996128 037__ $$aFZJ-2023-01125
000996128 082__ $$a540
000996128 1001_ $$0P:(DE-HGF)0$$aNedaei, Hadi$$b0
000996128 245__ $$aThe calcium-free form of atorvastatin inhibits amyloid-β(1–42) aggregation in vitro
000996128 260__ $$aBethesda, Md.$$bSoc.$$c2022
000996128 3367_ $$2DRIVER$$aarticle
000996128 3367_ $$2DataCite$$aOutput Types/Journal article
000996128 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675926425_7200
000996128 3367_ $$2BibTeX$$aARTICLE
000996128 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000996128 3367_ $$00$$2EndNote$$aJournal Article
000996128 520__ $$aAlzheimer's disease is characterized by the presence of extraneuronal amyloid plaques composed of amyloid-beta (Aβ) fibrillar aggregates in the brains of patients. In mouse models, it has previously been shown that atorvastatin (Ator), a cholesterol-lowering drug, has some reducing effect on the production of cerebral Aβ. A meta-analysis on humans showed moderate effects in the short term but no improvement in the Alzheimer's Disease Assessment Scale—Cognitive Subscale behavioral test. Here, we explore a potential direct effect of Ator on Aβ42 aggregation. Using NMR-based monomer consumption assays and CD spectroscopy, we observed a promoting effect of Ator in its original form (Ator-calcium) on Aβ42 aggregation, as expected because of the presence of calcium ions. The effect was reversed when applying a CaCO3-based calcium ion scavenging method, which was validated by the aforementioned methods as well as thioflavin-T fluorescence assays and transmission electron microscopy. We found that the aggregation was inhibited significantly when the concentration of calcium-free Ator exceeded that of Aβ by at least a factor of 2. The 1H–15N heteronuclear single quantum correlation and saturation-transfer difference NMR data suggest that calcium-free Ator exerts its effect through interaction with the 16KLVF19 binding site on the Aβ peptide via its aromatic rings as well as hydroxyl and methyl groups. On the other hand, molecular dynamics simulations confirmed that the increasing concentration of Ator is necessary for the inhibition of the conformational transition of Aβ from an α-helix-dominant to a β-sheet-dominant structure.
000996128 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000996128 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000996128 7001_ $$0P:(DE-HGF)0$$aRezaei-Ghaleh, Nasrollah$$b1
000996128 7001_ $$00000-0002-4149-7899$$aGiller, Karin$$b2
000996128 7001_ $$00000-0003-2041-5740$$aBecker, Stefan$$b3
000996128 7001_ $$0P:(DE-HGF)0$$aKarami, Leila$$b4
000996128 7001_ $$0P:(DE-HGF)0$$aMoosavi-Movahedi, Ali Akbar$$b5
000996128 7001_ $$00000-0002-1266-4344$$aGriesinger, Christian$$b6$$eCorresponding author
000996128 7001_ $$00000-0003-0604-9465$$aSaboury, Ali Akbar$$b7$$eCorresponding author
000996128 773__ $$0PERI:(DE-600)1474604-9$$a10.1016/j.jbc.2022.101662$$gVol. 298, no. 3, p. 101662 -$$n3$$p101662 -$$tThe journal of biological chemistry$$v298$$x0021-9258$$y2022
000996128 8564_ $$uhttps://juser.fz-juelich.de/record/996128/files/main.pdf$$yOpenAccess
000996128 909CO $$ooai:juser.fz-juelich.de:996128$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000996128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000996128 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000996128 9141_ $$y2022
000996128 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000996128 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000996128 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2019$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000996128 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000996128 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000996128 920__ $$lyes
000996128 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000996128 980__ $$ajournal
000996128 980__ $$aVDB
000996128 980__ $$aI:(DE-Juel1)IBI-7-20200312
000996128 980__ $$aUNRESTRICTED
000996128 9801_ $$aFullTexts