Heinrich Heine
Universitat
Diisseldorf B

INSTITUT FUR INFORMATIK h h

Datenbanken und Informationssysteme

Universititsstr. 1 D-40225 Diisseldorf

Neural Inpainting:
Repairing Artifacts in Histological Brain
Sections with Deep Generative Models

Tim Kaiser

Masterarbeit
Date of issue: 07. Juli 2021
Date of submission: 15. Dezember 2021
Reviewers: Dr. Timo Dickscheid

Prof. Dr. Markus Kollmann

Erklarung

Hiermit versichere ich, dass ich diese Masterarbeit selbststandig verfasst habe. Ich habe
dazu keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

Diisseldorf, 15. Dezember 2021 Lens

(Tim Kaiser)

Diese Arbeit wurde in Zusammenarbeit mit der Forschungszentrum Jiilich GmbH am In-
stitut fiir Neurowissenschaften und Medizin - Strukturelle und funktionelle Organisation
des Gehirns (INM-1) erstellt.

lJ JULICH

Forschungszentrum

Abstract

The human brain is subject to many different branches of modern neuroscience with an
increasing involvement of computational tools, such as High-Performance Computing
(HPC) and Artificial Intelligence (AI). Tasks like brain mapping and brain simulations
are reliant on reference brain models with high amounts of detail. While most reference
models operate on a macroscopic scale, the Julich BigBrain Project [1] developed a freely
available, ultrahigh resolution 3D human brain model from 7404 histological cuts, with
20 microns thickness, of a single human brain. These images, scanned at a spatial reso-
lution of 1 micron per pixel, often contain damaged sections of varying size and origin.
Physical damage may be present in the tissue sections prior to the cutting process or be
a result of it. This, together with other potential causes in the data generation process,
such as staining of the tissue for cell bodies, results in many kinds of histological artifacts
in the tissue sections. Previously, where possible these were manually identified and
fixed with digital tools as well as automated processes that blend in neighboring sections
to repair missing tissue pieces or estimate simple statistics, such as cell locations, from
neighboring sections [7]. This thesis documents the development of a fully automated
method to repair a variety of artifacts in histological brain sections using deep generative
models.

This method, called Neural Inpainting, is a pipeline consisting of three stages. The first
one is the Artifact Localization stage, where a network segments corrupted from uncor-
rupted areas within a small crop of a scan on a pixel-wise basis. From this, the CPN
network [36] computes a binary cell segmentation image that segments cell bodies from
the rest. The second stage, the Binary Inpainting, generates information on the locations
and shapes of new cell bodies, purely based on these two segmentation images. Lastly,
the Image Inpainting stage employs a GAN model, based on the U-Net for biomedical
image segmentation [30], to generate new content for the corrupted region. The output
of this stage is composed together with the uncorrupted region of the original crop to
produce the final image painting.

The result is a method that can process large amounts of image crops without super-
vision to produce repaired versions of tissue sections and deliver cell statistics, such as
amount and size of cell bodies, comparable to ground truth statistics when evaluated on
artificially masked data. The Image Inpainting stage provides repaired tissue sections,
while cell statistics can be extracted from the repaired cell segmentation image returned
by the Binary Inpainting stage. While some results display visually convincing quality,
the Image Inpainting model is unable to achieve this consistently, especially on data that
differs from the training data, e.g. in terms of the brain of origin, the location within the
brain or unusual cutting angles relative to the brain’s surface.

This thesis demonstrates the possibility of applying a deep learning method to automate
the reparation of histological artifacts on a large scale, which has partly been done man-
ually in the past. By no means does it exhaust the possibilites to do so and many aspects
of the model show potential for further improvements.

The code package can be found on GitHub [15].

CONTENTS

Contents

1 Introduction
1.1 Julich BigBrain Project
1.2 Histological Brain Tissue Sections
1.3 Research Objective
14 ApproachOverview

1.5 Background on Generative Models

2 Methods and Materials
2.1 Modular U-Net for Inpainting
22 TrainingData
2.3 Problem Analysisand Approach
24 Artifact Localization Lo o o
2.5 Artifact Reparation in Cell Segmentation Images - Binary Inpainting

2.6 Artifact Reparation in Histological Sections - Image Inpainting

3 Experiments
3.1 Artifact Localization
3.2 Cell Count in Repaired Cell Segmentation Images
3.3 Cell Size in Repaired Cell Segmentation Images
3.4 Cell Eccentricity in Repaired Cell Segmentation Images
3.5 PCA on Fourier Matrices of Cell Contours
3.6 Qualitative Evaluation of Binary Inpainting Models

3.7 Qualitative Evaluation of Image Inpainting Models

4 Discussion and Conclusion
4.1 DISCUSSION v v v i e e e e e e e e e e

42 Conclusion e,

A Appendix
Al Model and Training Details
A.2 Representation of Cell Contours via Fourier Format
A3 Inference Examples

A4 Hyperparameter Tuning

U W N R Rk

15
15
18
20
25

34

37
38
40
43
45
48
50
55

61
61
66

ii CONTENTS

A5 PyTorch and HardwareSetup 83
References 84
List of Figures 87

List of Tables 92

1 Introduction

1.1 Julich BigBrain Project

The Julich BigBrain project [1] developed an ultrahigh resolution 3D human brain model
that is freely available to help with neuroimaging tasks which rely on accurate reference
models. Such reference brains typically lack the level of detail that the Julich BigBrain is
able to provide. A single human post mortem brain has been sectioned, stained for cell
bodies, scanned at a very high resolution of 20 microns and then digitally reconstructed.
This model is currently being extended by further increasing its resolution and involving
methods from neuroimaging, brain modelling and AL

The digital images produced by the high-throughput scanners contain histological arti-
facts, such as tears and folds of the tissue. These can be due to already existing tissue
damage, but are also inevitable during the histological processing. These artifacts vary
greatly in size and impact on the data, from blurred regions to large tears. Previously, a
large portion of them were manually repaired, supplemented by automated repair algo-
rithms that used neighboring sections to estimate information for missing tissue section

[7].

1.2 Histological Brain Tissue Sections

The development and usage of the BigBrain involves methods from histology. This
branch of biology is the study of tissues and their structure on a microscopic level. This
section describes the data generation process, from brain to digital images, and the chal-
lenges involved.

The institute for neuroscience and medicine, structural and functional organization of the brain
(INM-1) is responsible for the data generation process in the BigBrain and other projects
involving reference brain models. A single brain was chosen, coming from a 65-year-
old donor at the Heinrich-Heine-University Diisseldorf. The brain was prepared for the
cutting process by fixing it in formalin to preserve the proteins and vital structures within
the tissue, and embedding it in paraffin wax to stabilize the cutting process. This makes
it possible to cut the brain into 20 micrometer thick slices. 7404 histological sections were
obtained this way. These were then placed on glass slides and stained for cell bodies
using the Merker method. Neurons are stained in a darker tone and the space in between
them appears lighter. The INM-1 uses a number of high-throughput scanners to scan the
stained sections with a spatial resolution of 1 micron per pixel and a color depth of 16 Bit.
A single section can take up to 20 GB of memory.

Each section receives an identification, denoting the brain it is from and the section num-
ber. The notation 'B01’ denotes the brain number 1, "B02” number 2 and so on. The
sections are simply numbered starting from 0. The section 'B21 - 3037” for example is
section 3037 from brain number 21. Data from four different brains was used for devel-
opment and testing in this thesis, brains B00, B06, B20 and B21. B20 is the brain used in
the BigBrain project. BigBrain dataset releases from 2014 and 2015 are freely available
under [4].

2 1 INTRODUCTION

N

(d) B30 - 0900 (e) B30 - 0900, 8000x10000 cutout (f) B30 - 0900, 256x256 crop

Figure 1: A selection of sections from two different brains. The left column shows entire
sections, the middle column shows cutouts of medium size and the right column shows
small crops where individual cell bodies are clearly visible. (Data source: Gehirnsamm-
lung INM-1 [2])

During this data generation process, multiple things can occur that result in visual dam-
age to the final images. Physical tissue damage can occur during the preparation and
cutting of the brain. The staining process can result in different levels of staining, e.g.
depending on the total time of exposure to the chemicals involved. Some sections can
appear significantly darker than others, hindering the use of automated methods, such
as segmentation or brain mapping. The used chemicals can also stick to unwanted ob-
jects, which causes black artifacts of varying sizes. Examples of artifacts are displayed in
tigure 2

1.3 Research Objective

The presence of artifacts in histological tissue sections causes problems for tasks that fo-
cus on any kind of statistics related to cell bodies, because they are obstructed or missing
in the scan. Other tasks, such as cell segmentation, are also hindered by the presence of
artifacts. Simply ignoring the corrupted areas is often not a good solution, since they ap-
pear inconsistently, and a good estimation of the missing content is more adequate. The
goal of this thesis is to develop a fully automated method that accurately detects any sig-
nificant artifacts and generates a repaired image where the artifacts have been replaced

1.4 Approach Overview 3

(a) Brain B06, 754x750p (b) Brain B20, 693x650p (c) Brain B21, 1041x787p

Figure 2: Three examples of different histological artifacts from different brains. The first
two depict examples where the chemical used for cell staining attatched to something
else than cell bodies and obstructs the tissue underneath. The last one is a large tear in
the tissue section. (Data source: Gehirnsammlung INM-1 [2])

with new content. For the latter, the focus is on two criteria: Visually convincing quality
of the generated image and a meaningful recovery of statistics with respect to cells in the
images, e.g. the cell count and cell sizes in specific areas. The term meaningful is meant
as in comparable to ground truth data when applying the method to artificially masked
images, where the removed areas don’t contain artifacts. The method focuses on the ac-
curate generation of information with respect to cells, while other image features, such
as fiber orientation in the tissue and histologically correct cell shapes are left for future
improvements.

This task is approached within the framework of Deep Learning. The first task, the pixel-
wise segmentation of artifacts within an image, is a classical segmentation task that can
be learned using annotated data. This sort of image processing task is known to be very
approachable with supervised learning and there are already successful architectures for
image segmentation on microscopic biomedical images [30]. The second task, the gen-
eration of new content in images with accurate cell statistics based on the rest of an im-
age, requires modeling complex, conditional distributions. In combination with the large
amount of data that is available through the INM-1, this problem setup lends itself to the
use of deep generative models.

Lastly, code for the method and all results in this thesis is provided as a python package
on GitHub [15].

1.4 Approach Overview

The approach that is presented in this thesis is the Neural Inpainting pipeline, which
consists of three different stages. Figure 3 provides a high level overview of this pipeline.
The first stage, the Artifact Localization, takes in a small crop of a light microscopic scan
of a human brain tissue section, that potentially contains artifacts and segments the im-
age into corrupted and uncorrupted areas, pixel-wise. This is a supervised task, learned

4 1 INTRODUCTION

on manually annotated scans of real artifacts. The second stage, the Binary Inpainting,
operates entirely on cell segmentation images, provided by the CPN network [36]. This
representation effectively discards all textural information in the crop and only keeps the
semantic information with respect to cell bodies. A Normalizing Flow model is used to
perform inpainting on the cell segmentation image and provide a binary painting that
contains information on the locations and shapes of new generated cells. This is an unsu-
pervised inpainting task which is learned on artificially masked data. The last stage, the
Image Inpainting, then performs inpainting on the segmented crop from the first stage,
but taking the result of the second stage into account as an additional input. This is ac-
complished using a heavily modified version of the U-Net [30] in a GAN setup, which
can now focus primarily on the textural content of the image, because the binary paint-
ing contains the relevant semantic information. The result is a repaired crop, while the
second stage is able to generate information on new cells with statistics such as cell den-
sity, size and eccentricity that are comparable to ground truth statistics when tested on
artificially masked examples.

ﬁ
't —) Artifact Localization ——
f

-.nl

Orwmal Crop Artifact Mask Masked Crop Cell Segmentation

Image Inpainting

0" g 4_‘ Binary Inpainting j

Image Pamtmg Binary Painting

Figure 3: High level overview of the three stage Neural Inpainting pipeline. Given a
masked crop of a light microscopic scan of a human brain tissue section, the CPN network
[36] provides a cell segmentation image that is completed by the Binary Inpainting stage
to provide an auxiliary input to the Image Inpainting stage.

The remainder of this chapter provides the necessary background knowledge on gener-
ative models and introduces the relevant model types. A good understanding of Deep
Learning basics such as backpropagation, feed-forward architectures and convolutional
networks is assumed.

Chapter 2 of this thesis introduces a modular architecture that is used for different mod-
els in the Neural Inpainting pipeline, followed by a detailed description of all relevant
parts of the method. The setup and processing of the datasets is described, as well as
an explanation and motivation of the approach. The remaining sections detail the three
stages of the Neural Inpainting pipeline step by step.

Chapter 3 contains a series of experimental evaluations of all stages, including compar-
isons to alternative approaches and models. It is structured by experiments for easy
comparison between models.

Lastly, chapter 4 discusses the results of the experiments section, states finding, limita-

1.5 Background on Generative Models 5

tions and opportunities for future work, before concluding the thesis in section 4.2.

1.5 Background on Generative Models

The goal of this section is to introduce the concept and design of generative models for
the purposes of this thesis. The core concepts behind Generative Adversarial Networks
(GANSs) and Variational Autoencoders (VAEs) are briefly presented. The third model
class which is relevant to this thesis, Normalizing Flow (NF) models, is explained in
more detail, since it is more complex and less established than the other two. For all
three model classes, material on more complex variants of these, as well as material on
more elaborate explanations is referenced in their respective segments.

Given N ii.d. samples from an intractable probability distribution pgaq € RP, the goal
of generative modelling is to generate new samples with similar features as the existing
data samples. The number of samples n is usually large and the distribution pg,, too
complex or high-dimensional for classical statistical inference. An analytical expression
for pgqt, is not feasible here and the evaluation of the likelihood of individual data points
is desired but not always possible. Generative models typically approach this problem
by learning a mapping from a tractable distribution Z € RY, e.g. a Gaussian, to the
complex data distribution. This mapping is called the generator gy : R — R” and can be
implemented as a neural network with learnable parameters 6. The generation process
of new samples then becomes a two-step process of sampling z ~ Z and mapping it
via gp to go(2) = & ~ Pdata- Z is known as a latent space. Its properties are a design
choice of the model and are sometimes learned during training, e.g. by parameterizing a
distribution by a neural network. While Gaussian distributions are generally accepted as
a good choice, the correct choice of the dimension d of the latent space remains an open
challenge in generative modeling.

gg(Z) (L Pdata | € RP

ge

7 | €R4

Figure 4: A base distribution Z is mapped to a more complex distribution py(Z) via the
generator gy and then compared with the data distribution pg4¢,. The function parameters
6 can then be updated based on this comparison.

Since this falls within the realm of unsupervised learning, classical objective functions
involving labels can’t be used here. Instead, a key component of the learning process

6 1 INTRODUCTION

is a measure of similarity between generated samples and real samples. The choice of
this component is a major difference between different types of generative models and
can determine model properties such as possible evaluation of the likelihood of samples,
restrictions on the dimensionality of the latent space and training characteristics of the
model.

The following three types of generative models all have different approaches in this re-
gard and offer unique advantages and disadvantages. This paper by [32] provides a
comprehensive introduction to the topic of generative modelling with a focus on the
three model types GAN, VAE and NF models.

1.5.1 Generative Adversarial Networks

GANSs are a well established type of generative models. The concept was introduced
in [11] and since has been subject to further research and countless modifications. A
GAN architecture consists of two models, a generator G and a discriminator D, which are
jointly optimized. G and D are differentiable functions that are parameterized by neural
networks. Given a data distribution p4.:, and a source distribution p, with efficient and
exact sampling, e.g. a Gaussian distribution, the original training objective defines a
minmax-game between G and D:

mGin max V(D,G) =Eyp,a@llog D(@)] + E. oy) [log(1 — D(G(2)))]

The discriminator is trying to discriminate between real data samples x ~ pgq:, and
the generated outputs G(z), while the generator is trying to produce outputs which D
classifies as real data samples.

Training Data

Real

Fake

Discriminator

Generator

ming maxp E @log D(@)] + E.,. (s [log(l — D(G(2)))]

L™~Pdata

Figure 5: Vanilla GAN architecture with example images from the MNIST dataset [23].

1.5 Background on Generative Models 7

In [11], sec. 4, it was shown that the model distribution pg converges to the data distribu-
tion Py, if the discriminator is updated enough times to reach its optimum given G and
if both networks have sufficient capacity. The aforementioned condition might need an
arbitrarily large number of optimization steps for D in order to be satisfied. This is not
practical in real world scenarios, so there is no guarantee for the convergence of a GAN
model.

A large portion of GAN research is dedicated to improving the training stability and
convergence behavior of GANs [3], [25], [26], [33]. Even with these improvements how-
ever, the set of hyperparameters that result in stable training and avoid problems such
as mode collapse or oscillatory convergence behavior can be very small in practice. This
is perhaps the biggest disadvantage compared to other generative models. Strengths of
GAN s are the generation of convincing data samples, especially on image data [39], fast
and scalable training [6] and sampling as well as good performance on high dimensional
data [37]. The tradeoff is that they have difficulty to capture the whole data distribution
and tend to focus on specific parts, since this is enough to fool the discriminator.

This survey paper by [14] covers model variants, training issues and improvements as
well as analysis of various GAN applications. A more in-depth explanation and illustra-
tion of the basics of generative models and GANSs can be found in this article by [28].

1.5.2 Variational Autoencoders

VAEs were introduced by [20] and have since been, similar to GANSs, subject to further
research and modifications. Before looking at the specifics of VAEs, we quickly introduce
likelihood based models. Given an unknown true data distribution pg,.,(x), data sam-
ples {1} | ~ pgata(2) and a model distribution py(x), parameterized by 6, the goal of
these models is to maximize the likelihood pg(z(*) for all given data samples z(?) during
training:

N N
Oopt = arg max Zm@(i)) = argmin) — log po(z)
=1 i=1

While VAEs fall into the group of likelihood based models, they don’t optimize this ob-
jective directly, but use a surrogate objective that is a lower bound on the marginal likeli-
hood pg(x). This can be useful when the marginal likelihood is intractable.

Now to be specific, in the problem scenario of a VAE we assume that there exists a latent
random variable z with unknown distribution pg- which captures the underlying struc-
ture of the data. Each data point z is the result of sampling z ~ py-(2) first and then
sampling « ~ pg«(z|z). All three of these distributions are unknown. In order to approx-
imate the true data generation process, we introduce two models: g4(z|x) and pg(z|z2).
These are known as probabilistic encoder and decoder in the VAE architecture. Given a
data sample x or latent representation z, they output a distribution over the latent space
or data space. The goal is now to find a model ¢,(z|z) which approximates the true
posterior pg(z|z) and we need a way of learning the model parameters ¢ and 6 jointly.

The KL-Divergence (also known as relative entropy) is a common distance measure be-
tween distributions and provides an elegant way of deriving the VAE objective. Given

8 1 INTRODUCTION

sample

Input Encoder qy(z|x) Latent Vector Decoder py(z|z) Reconstruction

Figure 6: Vanilla VAE architecture with example images from the MNIST dataset [23].

two continuous real-valued random variables P and (), the KL-Divergence is defined as
> p(z)
Dy |P = / z) lo () dx
kL[Pl|Q] 7001?() log @)

We can now derive the Evidence Lower Bound (ELBO):

Dikrlas(2|7)|po(2]2)] = /%(Z'x) log ;Zgjg dz

=— z|z) lo 7}99(2,@") z
= - [astete)iog 25

= —/qQﬁ(Z\UC) log zz(z’fr)der/qu(z!x) log py()dz

(z]x)
= /q¢(z|x) log];Z(é’é)) dz + logpp(z) >0
& log py(z) > /q¢(2\w) log Zz)(é’;))dz — L0, ¢,)

In the last line, we used the fact that the KL-Divergence is always non-negative. This now
means that L(6, ¢, z) is a lower bound on the log-likelihood of the data and we can use it
as a surrogate objective to maximize the likelihood of the data with respect to the model
parameters 6 and ¢. With a few more tricks, we can optimize this via standard stochastic
gradient descent methods. The training objective L(f, ¢, x) can be written as:

= zlz) lo Po(z,) 2
L0.0.7) = [aufelo)tog 20 0

— /Q¢(z|x) log qZ?iZi)dz—l—/%(z\x) log pg(x|2)dz

= —Dk1lgs(2|2)||po(2)] + Eq, (2|2 [log po(]2)]

The expectation here can be interpreted as a reconstruction-error term and the KL-
Divergence term acts as regularization on the latent space. It is common practice to
choose a simple distribution for py(z), usually a standard normal Gaussian. Notably, the
lower bound L(6, ¢, x) reaches equality with the log-likelihood of the data distribution
iff the approximation ¢4 (z|z) is equal to the true posterior py(z|z) almost everywhere.

1.5 Background on Generative Models 9

In order to approximate the expected reconstruction error Eg,.|,)[log pp(z|2)] via sam-
pling the so-called reparameterization trick is employed. It allows us to rewrite an ex-
pectation w.r.t. ¢4(z|z) such that the Monte Carlo estimate of the expectation is differen-
tiable w.r.t ¢. Formally, we can express a random variable z ~ ¢4(z|x) as a deterministic
variable z = g4(€, x), where € is an auxiliary random variable with independent marginal
p(e) and g4(.) is a deterministic function parameterized by ¢. In the gaussian case for
example, let € ~ N(0,1) and gg4(€) = p+ o¢, ¢ = (u,0). Then z = gy(e) ~ N(u,0?).
Therefore, we can rewrite an expectation w.r.t N(z; i, 02) as

L
IEN(z;,u,ch) [f(Z)] = IE“N(e;O,l) [f M+ UE Z ,LL + 06 with E(Z) ~ N(Ov 1)

This was a short version of the full derivation of the reparameterization trick from [20],
chapter 2.4.

In the above, a few technical details were left out, mostly assumptions on the distribu-
tions like differentiability w.r.t 6 and ¢ and details in the reparameterization trick. The
original paper [20] contains a complete derivation of the VAE method. A more intuitive
explanation with good illustrations for this method can be found in this article by [29].
The authors of the original paper also released a greatly expanded version of their earlier
work, which explains the topic in finer detail and gives more elaborate context: [19].

A strength of VAEs is the generality of the method. There is a lot of freedom in the
choice of the models and the involved distributions, which potentially allows for the in-
clusion of prior knowledge of the data distribution or underlying data structure. VAEs
are relatively easy to optimize and it is easy to compare the performance of two VAEs by
comparing their estimated log-likelihood, while it is unclear how to quantitatively com-
pare the performance of two GANs. When looking at image data however, VAEs tend to
be outperformed by GANSs in terms of sample quality [5]. A crucial difference is that a
GAN can assign a training sample effectively 0 probability under the model, because it is
not a maximum likelihood model. For a VAE, this would result in an infinitely high loss.

1.5.3 Normalizing Flow Models

This introduction to Normalizing Flow models follows the structure of the comprehen-
sive survey paper by [21], with added details and explanation on the decomposition of
the maximum likelihood objective. More information on background, applications and
model types which are not relevant to this thesis, can be found in chapters 1-3 of the
survey paper.

Concept

Normalizing Flow (NF) models are, together with the popular GAN and VAE models,
members of the family of generative models. They are also likelihood based mod-
els, which means that given an unkown true data distribution pg,:,(z), data samples
2 ~ pyae(z) and a model distribution py(z), parameterized by 6, the model is trained

10 1 INTRODUCTION

by maximizing the likelihood pg(2(?)) for all given data samples z("):

N

Bopr = arg max > po(z)
=1

The unique property of NF models is that they optimize this likelihood directly, allevi-
ating the need for surrogate objectives, such as the ELBO used in VAEs. The standard
objective for NF models is

N

1 .
Oopt = arg minﬁ Z —log pg(zV)
o i—1

To be able to optimize this objective directly, we need to be able to evaluate py(z(?)). The
core idea here is to use the Change of Variables Formula to map a simple distribution
with efficient sampling to our more complex data distribution.

Theorem 1. (Change of Variables Formula). Let X and Z be random variables and f : R™ — R"
be an invertible map such that X = f(Z). Then
o)~ ()
det (ax

By parameterizing the function f, e.g. as a neural network with parameters 6, we can
learn it from data samples = ~ pguq(2). This imposes several restrictions on the neural
network architecture:

px () =pz(f~H(z))

1. f needs to be an invertible function with inverse g := f~!
2. f needs to be sufficiently expressive to accurately model the target distribution
3. fand/or g need to be efficient to compute, f for learning and g for sampling

4. The determinant of the Jacobian of f~! needs to be efficient to compute

In practice, we use a simple base distribution Z, e.g. a Gaussian, and design an invert-
ible network architecture, whose forward pass and Jacobian is efficient to invert, while
being expressive enough to learn the mapping from our base distribution to the target
distribution.

The transformation from base distribution to target distribution is called generative di-
rection and the inverse is called normalizing direction, hence the name "Normalizing’
Flow.

1.5 Background on Generative Models 11

Z=f(X)
Normalizing

direction

pz(2)
Px(x)

X=f"1(X)
_—
Generative

direction

Base Distribution Z Target Distribution X

Figure 7: Change of variables between the density functions of the base distribution p,(z)
and target distribution p,(x).

To achieve the desired expressivity, we can concatenate multiple invertible networks
fi, ..., fx with simple Jacobians to obtain a more expressive network:

f=fio..ofk

With g, = f "

fl=ggo..og=g

and determinant of the Jacobian
K K
det(Df(x;0)) = det (11 Dfelans 9)> =] det(Dfu(x;0))
k=1 k=1

The invertibility is preserved here, because a chain of invertible functions is again invert-
ible, and the final Jacobian is simply the product of all Jacobians of the smaller networks.
Because the determinant is a multiplicative map on square matrices, the determinant of
the Jacobian of g is the product of the determinants of all g;, . This concatenation of trans-
formations is responsible for the second part of the name, Normalizing "Flow’.

We can now start to write out the maximum likelihood objective into terms we can com-
pute. First, consider the i-th inverse transformation in the flow and denote z;_; := fi(2)
fork =1,.,K — 1. zg := z, 20 := z and 2z, ~ pi(2x). For readability, we omit the
parameters of f: fr(z) := fi(2x;0). Then

pr(2k) = pr—1(fr(2x)) ‘det 81;’;(2’“)
2k
= log pr(zk) = log pr—1(zk—1) + log |det M

sz

12 1 INTRODUCTION

This allows us to decompose the log likelihood of a single sample as follows.

0
log p(z) = log pi (2) = log pr—1(2K 1) + log |det fg;(:{)'
o pica(zx_a) + log |det HEEED |0 g O GK)
0zK—1 02k
K
Ofk(2k)
= log po(20) + Z log |det oo

k=1
The whole maximum likelihood objective becomes

N

N K
arg;nax Z logpg(x(i)) = arg;nax Z logpz(f(x(i); 0)) + Z log
i=1 i=1 k=1

(@),
ro 20 E50)
82',(;)

All terms on the left side can be computed after a foward pass through the model.

p-(f(z(9;8)) is the likelihood of the input sample z(*) after the complete model trans-
(i),

formation f and det W are the determinants of the Jacobians of each individual

layer f;. In practice, this sum is accumulated during the foward pass.

[21] contains a comprehensive list of different types of NF models. For now, only the

types of NF models which appear in this thesis are introduced, namely Coupling and

Autoregressive Flows.

Coupling and Autoregressive Flows

Coupling and Autoregressive Flows are two types of NF designs which employ similar
strategies to increase the expressivity of a network while maintaining an upper triangular
Jacobian matrix. They are the most common type of NF with well known NF models,
such as RealNVP [9] and Glow [17], being a Coupling Flow. This section closely follows
the sections 3.4.1 and 3.4.2 from [21].

Coupling Flows

Introduced by [8], Coupling Flows are characterized by their use of coupling layers. Con-
sider an input € R” and an invertible function hy : R — R?, which is parameterized
by 6. If we now partition z into two subsets (z,2%) € R? x RP~4, we can define the
invertible function g : R”? — RP:

with inverse g~! : RP — RP:

1.5 Background on Generative Models 13

The coupling function & is parameterized by an arbitrary function ©(x?). ©(-) is called
a conditioner. The funtion g corresponds to a single layer g; from the concept segment
above. For simplicity, we omit the index here. We can now adjust the expressivity of this
layer by using different conditioners, e.g. neural networks. The Jacobian matrix of g has

the form N B B B
Doy~ 200 _[35 o] _[meh e

g\r) = o M Oy - 0 I
OxA OxB d

This implies that the determinant of 8%—(;3) is simply the determinant of % = Dh(x).

The partitioning of = is an open design choice here. Also, if we were to use multiple cou-
pling layers after each other, the second subset would always be passed through without
any transformation. This is why Coupling Flows employ some form of permutation of
x between coupling layers. For example, RealNVP [9] uses an alternating checkerboard
pattern, such that the parts of which were passed through in one layer are updated in
the next one. The Glow model [17] uses learnable 1x1 convolutions as a generalization
of a permutation operation.

Autoregressive Flows

The idea of an Autoregressive Flow first appeared in [18]. Similarly to Coupling Flows,
we define an invertible function iy : R — R, parameterized by ¢, and call it a coupling
function. Define g : R — RP with y = g(x). For t = 1,..., D, the output of g is defined
via the coupling function as

Y = h(ze, O(z1:4-1))

Again, the functions Oy, ...,©p are called conditioners and can be chosen as arbitrary
functions, except for ©; which is constant. Note, that we have a similar structure to
coupling flows, namely the outputs are computed via a coupling function which uses
part of x as an input and is parameterized by other parts of x. In Coupling Flows, we
build a partition of x, while here we move sequentially through the entries of z.

Due to the autoregressive structure, the Jacobian matrix Dy is triangular with determi-

nant:
D

)
det(Dg) = [| a%
t=1

The forward pass of g can be implemented with an autoregressive network and does not
need to be computed sequentially, because each output y; solely depends on the previous
inputs z1.;. The Masked Autoregressive Flow (MAF) model [27] uses this idea. For the
inverse

Ty = h_l(yt, O(x1:4-1))

however, each output x; depends on all previous outputs z1.;—1. This needs to be com-
puted sequentially and thus cannot be parallelized. [18] used this observation to for-
mulate the Inverse Autoregressive Flow (IAF) model, which is effectively the inverse
transformation to MAF. It defines the forward pass as

yi = h(z, ©(y1:0-1))

14 1 INTRODUCTION

which implies the inverse to be

zr = h" y, O(y1:4-1))

Now, the forward pass needs to be computed sequentially and the inverse can be par-
allelized. Under a small restriction, MAF and IAF are mathematically equivalent ([27]
Appendix A). Their tradeoff is in computational efficiency: MAF has a fast normalizing
direction (likelihood computation and learning) and a slow generative direction (sam-
pling), vice versa for IAF.

15

2 Methods and Materials

2.1 Modular U-Net for Inpainting

The U-Net [30] is a fully convolutional encoder-decoder model which was originally pro-
posed for biomedical image segmentation . Both, in the final version and in the devel-
opment of the Neural Inpainting model, variations of the U-Net model were used. The
result is a modular architecture that is called the modular U-Net for the rest of this thesis.
This section gives an overview over the model architecture that was used in this project.
It is modular in the sense that different parts of the architecture can be omitted or added
depending on the task. Later in this chapter, several variations of the full architecture are
specified by excluding features of the following full architecture.

In the following, the term convolution always refers to a convolutional layer as it is com-
mon in deep learning, not the mathematical convolution operation.

3>
>

Y

Bottleneck Decoder

Convolutional Blocks 2x2 Conv - Stride 2 NN-Upsampling Softmax/Tanh Activation

Encoder

Figure 8: Overview of the Modular U-Net Architecture. The very first and last block are
the input and output block which achieve the correct number of channels for the encoder
and model output respectively.

Overview The model consists an encoder section, a bottleneck and a decoder section.
The encoder contains three U-Net blocks with each of them decreasing the feature di-
mension and increasing the number of channels. The bottleneck is a series of dilated con-
volutions, normalization and activation layers. Feature and channel dimensions remain
constant here. The decoder contains two U-Net blocks with each of them increasing the
feature dimension and decreasing the number of channels. There is one less U-Net block
in the decoder than there is in the encoder because the end of the bottleneck includes
the first upsampling layer. This is an implementational restriction because of the skip-
connections between encoder and decoder. At the very beginning of the model, there
is an input block. The only difference to a U-Net block is that the channel dimension is

16 2 METHODS AND MATERIALS

not doubled, but scaled from the channel dimension of the input to a channel dimension
which can be chosen as a width parameter of the model. Similarly, at the end of the model
there is an output block. The first skip connection connects these two blocks.

The following paragraphs describe different parts of the architecture and training setup.
Skip connections and U-Net blocks are from the regular U-Net, only with a modification
to the upsampling layers. All other parts are new or significantly modified compared to
the regular U-Net.

Skip Connections These are the characteristic feature of the U-Net: After each block
in the encoder the output is not only passed onto the next layer in the encoder but also
copied over to the block in the decoder with matching feature and channel dimension.
There, it is concatenated with the output of the previous block in the decoder to form the
input for the next block in the decoder, see figure 8.

U-Net Block A U-Net block consists of three parts. The first is a convolutional layer
which increases or decreases the number of channels, followed by a batch normalization
layer [12] and an activation layer. The second part is a convolutional layer with a residual
connection and again followed by batch normalization and activation layers. The last
part is a layer to upscale or downscale the feature dimension. For downscaling the model
employs standard convolutional layers with kernel size 2 and stride 2. For upscaling
nearest-neighbor upsampling is used, instead of transposed convolutions which are used
in the regular U-Net, as these can cause checkerboard artifacts. The upsampling also
comes with a reduction in the number of channels by a factor of 2. This is achieved
with a standard convolutional layer with kernel size 1. For all convolutional layers in the
above for which the kernel size was not specified it is a design choice of the model, kernel
size 3 being the most common choice.

Variable Model Width The model has a hyperparameter that determines the number of
channels of each convolutional layer. This parameter sets the number of output channels
of the input block. All subsequent convolutional layers have their number of channels
determined by this, because each U-Net block scales this number up or down by a factor
of 2.

Normalization Layers For normalization there are two options: Batch normalization
[12] and spectral normalization [26]. The former is a popular form of input normalization
where the inputs to a layer are normalized to approximately have mean 0 and standard
deviation 1. The latter is a form of weight normalization which normalizes the weights
of a layer using an estimate of their eigenvalues. Its intended use is in the discriminator
of a GAN to stabilize the training, although it can also be used in the generator.

Activation Layers This model employs two possible activation layers: ReLU and
LeakyReLU. ReLU is perhaps the most popular activation function in neural networks.
It was used long before the recent success of deep learning. A very early occurrence is

2.1 Modular U-Net for Inpainting 17

Encoder U-Net Block Decoder U-Net Block
+ +
/ CA Y A Y

: : - —r— —>

/16—>32 32 — 32) 64 — 32 32 — 32 /

32— 16
+
3x3 Conv

2x2 Conv - Stride 2 + Normalization Residual Connection NN-Upsampling 1x1 Conv

+ Activation

Figure 9: More details on the U-Net block. The numbers below the convolutional blocks
are an example of the transformation of the number of channels of the input.

in [10]. LeakyReLU is a modification of ReLU, first proposed in [redmon2016], which
provides a non-zero gradient for every input as opposed to the ReLU function. It is a
popular choice in GAN networks.

Gated Convolutions Gated convolutional layers are a variation of the standard convo-
lutions [39]. They were specifically designed for inpainting tasks on image data where a
binary mask, used to mask a number of pixels in the image, is passed as an additional
input to the network. They provide a learnable, element-wise weighting of the output of
a convolutional layer, where each output is multiplied with a weight between 0 and 1.

The output formula for a single layer with gated convolutions is:

Gating:ZZWg-I
Feature:ZZWf-I

Output = ¢(Feature) ® o(Gating)

for input I, convolutional filters W, and W and arbitrary activation function ¢. Gat-
ing and Feature are computed via regular convolutions and the results are multiplied
element-wise and with different activation functions.

If used, these replace all standard convolutional layers in the network, with the exception
of the 1x1 convolutions used for scaling the number of channels. This roughly doubles

18 2 METHODS AND MATERIALS

the number of learnable parameters, since an additional convolution of the same size
needs to be performed for each standard convolution.

Bottleneck with Dilated Convolutions The bottleneck is a small series of convolutional
blocks, including normalization and activation layers with constant feature and channels
dimensions. It is a common practice in GAN based inpainting networks to use dilated
convolutions here [38], [39], [40] to achieve full coverage of the internal representation by
the receptive field.

GAN Loss Inaregular GAN setup, the U-Net architecture would be used as a generator
together with an encoder-like discriminator that outputs a scalar prediction on whether
the input was real or fake. However, it can also be utilized as a discriminator, as described
in [35]. The GAN objective needs to modified to be applied element wise to every pixel
of the output. Effectively, the discriminator judges each pixel individually instead of
the whole image. This is a perfect fit for inpainting tasks, since we no longer need to
pass fake and true images separately to the discriminator during training. Instead, the
discriminator’s objective is to learn to distinguish the real and fake parts of a painting.

2.2 Training Data

Two datasets were used for training, one that purposefully contains at least one artifact
per scan and one that contains as much intact tissue as possible, although smaller artifacts
are also present here. The two training datasets are composed of light microscope scans
of human brain tissue sections, as described in section 1.2. They contain single-channel,
gray scale images with a spatial resolution of 1 micron per pixel. Because the cortical
regions with their clearly visible, dense population of cell bodies are of interest here,
smaller cutouts of cortical patches are saved instead of scans of entire slices.

The artifact dataset contains manually created cutouts of artifacts with image dimensions
in the 4-digit pixel range and below. This is still too large for a network to process quickly,
but rather small compared to the sizes of an entire slice. The dataset consists 45 of these
cutouts, which amounts to more than 1 GB of artifact data. Each cutout was annotated
manually to label the corrupted area pixel wise. The annotation covers slightly more than
the artifacts to ensure that they are always completely removed. Most artifacts tend to
have a blurry transition to the intact part of the image. These need to be removed fully
since the part which is labelled as uncorrupted by the network are copied over into the
final painting. The data here comes from different regions of 4 different brains, BO0, B06,
B20 and B21.

The dataset of intact tissue contains larger cutouts of cortical patches with image dimen-
sions from 18000x17000 pixels down to 6000x6000. It consists of 7 cutouts, all coming
from brain B21, totaling almost 1GB of intact tissue data. While these cutouts also con-
tain artifacts, most of the tissue is intact and they serve as ground truth data for feedback
on what intact tissue should look like.

Considering the internal representations in feed-forward neural networks, these image
sizes come with high demands for memory on the GPUs that process them. Also, while

2.2 Training Data 19

(a) Brain B06, 754x750p (b) Brain B20, 693x650p (c) Brain B21, 1041x787p

Figure 10: Three examples of different histological artifacts from different brains. The first
two depict examples where the chemical used for cell staining attatched to something else
than cell bodies and obstructs the tissue underneath. The last one is a large tear in the
tissue section. (Data source: Gehirnsammlung INM-1 [2])

(a) Brain B21-3037 (b) Brain B21-3037 (c) Brain B21-1959

Figure 11: Three examples of cutouts that make up the intact dataset. (Data source:
Gehrinsammlung INM-1 [2])

fully convolutional architectures are technically able to process different image sizes with
the same network, this does not apply to all networks in the Neural Inpainting pipeline.
Hence, for all training and testing purposes, the cutouts from the datasets are cropped to
a smaller, constant and quadratic image size. This size is a hyperparameter choice that
needs to be consistent across the Neural Inpainting pipeline. Since the Artifact Localiza-
tion network is fully convolutional, it technically works on every crop size, even without
retraining. The encoder-decoder structure of the U-Net imposes the small restraint of
divisibility by 8, because the feature dimension is halved three times along both axes.
Ultimately, the crop size is mostly determined by the Normalizing Flow network in the
Binary Inpainting stage, since it has the least flexibility here. Common crop sizes during
the development ranged from 256x256 to 384x384. These do not necessarily have to be
square.

For the remainder of this thesis, the word "crop” refers to these quadratic image crops

20 2 METHODS AND MATERIALS

of constant size that serve as input data to the networks. During training, these crops
are generated as follows: A cutout from the dataset is chosen, then a random pixel in
that cutout is selected as the top left corner for the crop. A crop with the given crop
dimension is cropped out. The total brightness of the crop checked to see whether it
contains enough tissue area. Since the cortical area is close to the surface of the brain,
most cutouts also contain white background areas that are not part of the brain. If the crop
contains too much white, it is discarded and a new corner pixel is chosen. This process
is repeated until the desired amount of crops for a batch have been selected. The batch is
normalized to the range [-1,1] and simple data augmentation, including horizontal and
vertical flipping, as well as 90 degree rotations is applied.

The original data format is UINT8 with a single color channel. All training crops are
normalized to the range [-1,1] by dividing by 127.5 and subtracting 1. Note that the mean
pixel value is not necessarily 0 after this.

2.3 Problem Analysis and Approach

In this section, the task of finding and repairing artifacts in histological brain sections is
analyzed and the approach motivated. While sections 2.4 to 2.6 give a detailed descrip-
tion of the final approach, this section aims to illustrate the reasoning behind why certain
parts were or were not included and how the three stage structure emerged during de-
velopment of this method. Firstly, section 2.3.1 provides a concise overview of the final
approach.

2.3.1 Neural Inpainting Overview

The complete Neural Inpainting Pipeline contains three individual stages. The first stage
is the Artifact Localization whose goal it is to detect histological artifacts within a crop
and to return a binary segmentation mask which assigns a label to each pixel based on
whether it belongs to the corrupted region of the crop or not. This is a supervised learning
task trained on manually annotated data.

The second stage, the Binary Inpainting consists of two steps, the Density Inpainting
and Shape Inpainting, where an inpainting task is completed on a cell segmentation
image of the crop. This cell segmentation image is a binary image, segmenting pixels
which belong to cells from pixels which belong to the background. This effectively re-
moves all textural information from the crop and only the semantic content remains. To
achieve this, a U-Net based encoder-decoder architecture and a Normalizing Flow model
are used for the two steps respectively. The aim here is to generate new cells in a way
that is as coherent as possible with the cell statistics within a crop, mainly focusing on the
density and shape of cells.

The last stage, the Image Inpainting, utilizes a U-Net based GAN to generate visually
convincing paintings, given a masked crop, the mask itself and the binary painting from
the previous stage. See figure 12 for an overview of the complete Neural Inpainting
pipeline.

2.3 Problem Analysis and Approach 21

&gl
Artifact Mask Masked Crop

o 0
Gated Dilated
Convolution

Density Inpainting Center Locations Shape Inpainting

Binary Inpainting

Generator Image Painting Discriminator Pixel-wise
Discrimination

Image Inpainting

Figure 12: Overview of the Neural Inpainting pipeline. The three levels in the figure
display the three stages of the Neural Inpainting pipeline, with the second stage, the
Binary Inpainting, being split into two steps. All networks except for the cGlow model
are based on the U-Net model [30]. For details on these modular U-Net variants, see
section 2.1. All of them employ skip-connections, which are not depicted in this figure.

2.3.2 Artifact Localization and Reparation as a Two Step Process

The task of repairing histological artifacts is fundamentally split into two steps: The first
step is to identify the corrupted areas. The second step is to modify them in a way that
conforms to a set of criteria, in this case convincing visual quality and a meaningful re-
covery of select statistics, such as cell density and shapes within a crop of a scan. Using
the framework of Deep Learning, these two tasks are approached as two completely sep-
arate tasks, involving different networks, training setups and even different data. Both
parts are separately solved and then put together to form a complete model pipeline.

The first task, the Artifact Localization, is approached as a problem of supervised learn-
ing and with a single network. The input to the network is a raw crop of a brain scan
and the network is supposed to return a binary mask of the same size, assigning a label
to every pixel. Intuitively, the pixels are labelled as uncorrupted or corrupted tissue, in
a technical sense however a positive label means that the pixel should be removed for
following steps of the method. This is not necessarily the same since it makes sense to
be generous with the labelling of the corrupted area, mostly because the exact border
around it is not always clear, e.g. when an artifact includes blur. The data here is a set of
manually annotated images containing various forms of histological artifacts. This task
is explained in detail in section 2.4.

The second task, the inpainting, is a classic image inpainting task where the goal is to
replace a missing part of an image with repaired content. The output of the Artifact

22 2 METHODS AND MATERIALS

Localization network is a mask which is used to remove a portion of the image. This
masked crop, together with the mask itself, serve as the inputs to the inpainting net-
work. The network then has to generate new content for the masked pixels and this is
composited together with the original pixels from the unmasked region of the image to
a completed painting. During training however, real examples of corrupted brain tissue
are not needed, because the corrupted regions would be cut out anyway. Instead, parts of
scans of fully intact brain tissue can be cut out artificially. This has the crucial advantage
that the real content of the masked section is known and can be used for feedback dur-
ing the training process. Because of this, the dataset is not the manually annotated data
used for training the Artifact Localization network. Instead, large scans of intact brain
tissue are used. Since this is a generative task, the appropriate class of networks here are
generative networks. The modular U-Net from section 2.1 was primarily developed for
this task and is used, including all its features. In the remainder of section 2.3 the concept
behind the approach to this task is presented. In sections 2.5 and 2.6 the execution of the
approach is examined in detail.

2.3.3 Artifact Reparation in Cell Segmentation Images - Binary Inpainting

The naive approach to the inpainting task would be to take a generative model, e.g. a
GAN, and set up the training with a masked image together with the mask as inputs
to the network. The fundamental problem with this approach is to achieve the balance
between the two target criteria, good visual quality and the faithful reproduction of cell
statistics within a crop. The second criterion demands very specific properties of the
outputs while focusing on only a small part of the image, the cells. The network needs to
be able to precisely capture quantities like cell density and sizes from the masked input
image and then produce new content accordingly. In other words, the network needs to
be able to filter out the semantic content of the input image with respect to cells. While
high visual quality can be achieved using state of the art GAN based inpainting models,
it is difficult to optimize such a model with respect to statistical properties of a crop,
such as segmented cell density or sizes. Experimental evidence for this is provided in the
experiments sections 3.2-3.4 and 3.7.3 and discussed further in the second paragraph of
section 4.1.

The high resolution scans of brain tissue show a very clear distinction between semantic
content and textural content. The placement and shapes of cell bodies within a scan is
the semantic content and contains very little textural information, while the background
contains almost exclusively textural information. The generation of correct cell statistics
for a painting requires a good semantic representation within the network, which can be
described using far less information than is needed to describe the whole image. The

generation of the background can then be performed based on the information on new
cell bodies.

Given this observation, the idea is to separate the generation of semantic and textural
content, i.e. cell bodies and background. Because natural images also tend to have the
relationship of semantic content with foreground-background separation, this idea is not
a new one. [38] proposed an inpainting model for natural images with three steps. First,
a binary foreground map is created which separates background and foreground in the

2.3 Problem Analysis and Approach 23

image. Given this map, an incomplete contour mask is created, which effectively marks
the border between background and foreground. It is incomplete because the missing
part of the image usually overlaps at some point with this contour and thus part of the
contour is missing. In this second step, the inpainting process is now applied to this
incomplete contour map to obtain a completed contour. Using the completed contour
as an additional input to the original incomplete image, a final inpainting network now
generates the completed image.

Inspired by this method, the inpainting task in the Neural Inpainting pipeline is be split
into two stages: Binary Inpainting and Image Inpainting. Instead of a foreground-
background segmentation, a cell segmentation is used, which creates a binary mask of
the same size as the input image based on which pixels belong to cells. Given this cell
segmentation image, the Binary Inpainting stage is a completely separate inpainting task
whose goal is to generate information on the position and shape of new cells. Effectively,
all textural information was removed from the image and this stage is responsible for the
satisfaction of the cell statistics criteria of the final image painting. The Image Inpainting
stage then receives a completed cell segmentation image, the binary painting, as an ad-
ditional input together with the masked image and mask itself, see figure 12. It can then
focus on the generation of correct textural content while the semantic content is already
determined from the binary painting. The output of this stage, composited with the pix-
els from outside the corrupted area from the original crop, is the final image painting.
This is the end result of the Neural Inpainting pipeline, however if cell statistics without
artifacts are the only interest, these should be directly extracted from the binary painting.

The primary goal of this idea is to give the model more control over the generation of in-
formation for new cell bodies, because such a specific feature is hard to single out when
optimizing a GAN. Ideally, this also results in better cell statistics in the final image paint-
ing, however this requires the Image Inpainting model to include the binary painting
faithfully into the image painting.

2.3.4 Model Choice for Binary Inpainting

Similarly to the approach without the Binary Inpainting step, the naive approach here
would be to take a state of the art, GAN based, inpainting method. The sections 3.6.4
and 4.1.2 evaluate and discuss a GAN based approach to the Binary Inpainting task,
which includes concepts from the U-Net based discriminator [35], foreground aware im-
age inpainting [38] and gated convolutions [39]. Section A.1 contains the relevant model
and training details. Experiments with this approach show severe problems with mode
collapse, a common issue with GANs. This manifests in two ways: One issue is an oscil-
latory behavior of the generator where it cycles between outputs containing too few or
too many generated cells, as well as between generated cells being too small or too large.
For example at some point during training, the generator is in a state where it tends to
output too few but too large generated cells, regardless of the input. Given some more
training epochs and the outputs now contain too many generated cells in relation to the
ground truth. Ultimately, the GAN failed to show a convergence behavior w.r.t the two
simple statistics of cell amount and sizes. The second form of mode collapse happened
at seemingly random points during training. Here, the generator wouldn’t generate any

24 2 METHODS AND MATERIALS

cells at all and simply output black (negative label) areas. Since black areas of varying
sizes are part of the true data as well, the discriminator seemed to be unable to learn at
which point the size of these areas becomes unreasonable.

This observation is related to a core reason why a GAN is inherently a bad approach here.
Recall that the goal of the Binary Inpainting task is to generate new cells in such a way
that specific statistics of a crop are maintained to a reasonable degree. This includes cell
density and shapes. While a GAN does tend to pick out specific features from the input
data, it doesn’t stick to these and constantly changes its focus instead. The discrimina-
tor looks for features in the data which are incorrectly portrayed in the outputs of the
generator and then make the final decision of real or fake based on this feature. Because
the generator is updated based on the discriminator, it shifts its attention to this specific
feature, causing the discriminator to start focusing on a different feature. This results in
a constant back and forth between image features which is not desirable for this task.
More details on this result and different approaches to remedy this problem is discussed
in section 4.1.

Now that we have established that a GAN based approach doesn’t perform as well as it
does on natural images, the question is what kind of model to use and whether a different
representation of the data is helpful.

A more specialized kind of networks, Graph Neural Networks (GNNs), have gained
significantly more attention in the last years. Given the resemblance of cells in a crop
to nodes in a graph, a method based on a GNN might offer some unique advantages.
The main problem here is that each input to the network corresponds to a completely
different graph. While there are models for dynamic graphs with good performance, like
the TGN model [31], they are restricted to small changes in the graph from iteration to
iteration, like the addition or deletion of a single node. This makes the class of GNN, at
least for now, unsuitable for this task.

Since inpainting is a generative task, the method has to be able to accurately model a very
high dimensional, conditional distribution and be able to sample from it. The underly-
ing true distribution of cell locations and shapes should be of a much lower dimension
than the one in pixel space. Additionally, if we compare our cell segmentation images to
natural images, they contain far less information in total, since we have already omitted
all textural information. This suggests that the representation as a 2d-image is inefficient
and can be replaced with a smaller data format without losing any relevant informa-
tion. Such an alternative is the Fourier format for cell segmentation images from [36].
Given the contour of a segmented cell as a sequence of x- and y-coordinates, the con-
cept of the Fourier series can be applied to describe these sequences as smooth functions.
These functions are parameterized by N Fourier coefficients where N is a hyperparame-
ter choice. This means that the shape and location of a segmented cell can be described
by 4N +2 coefficients, where appropriate values for N are between 2 and 6. A crop of size
256x256 usually contains less than 192 segmented cells, which means it can be described
via the Fourier format with no more than 192x26 coefficients, for N = 6. This drastic
reduction in dimensionality only comes with a minor loss of information. The contour
representation via a Fourier series is not exact, with higher values for N resulting in bet-
ter approximations. The Fourier format is used in all steps of the Binary Inpainting task.
A detailed formulation and explanation of the Fourier format can be found in section

2.4 Artifact Localization 25

2.5.1.

Given this Fourier format, the first two coefficients for each segmented cell are the x- and
y-coordinate of its center (center in a loosely defined way). This means that compara-
tively, the locations of all cells in an image requires far less information to be described
than the shapes of all cells. Together with the fact that the cell density is an important
statistic in a crop, the idea presents itself to solve the problem of generating new locations
for cells as a separate, easier problem first. One crucial advantage here is that the ex-
tremely low dimensionality of 2 allows for very easy sampling. The core idea is to learn
to complete a density estimate of a masked crop and then sample from the completed
density. This can be done in a straight forward way using Kernel Density Estimation
(KDE). This step of the Binary Inpainting stage, called Density Inpainting is examined
in detail in section 2.5.2.

What remains is the generation of coefficients that describe the shape of a generated cell.
Here, the information on where all generated cells are located can be used as an ad-
ditional input to the network. This step, the Shape Inpainting, completes the Binary
Inpainting and is described in section 2.5.3. Since the goal here is to fit a complex, high
dimensional distribution as accurately as possible, Variational Autoencoders (VAEs) and
Normalizing Flow (NF) models should be a better fit for the task than GANSs are, with
the NF models offering more extreme advantages and disadvantages. The representation
of the data in the Fourier format helps to remedy some shortcomings of NF models. This
ultimately makes them the better choice here, especially regarding good statistics in the
painted sections, as the experiments in sections 3.3-3.5 show.

2.4 Artifact Localization

In this section, the Artifact Localization stage is presented in detail. Model and training
details related to hyperparameter choices can be found in section A.1.

n

Artifact Mask

Figure 13: Overview of the Artifact Localization stage. This network is based on the
U-Net model [30], hence it employs skip-connections between the encoder and decoder
sections.

The goal of this stage is to localize histological artifacts in raw crops of brain scans. This
is accomplished with a single network that takes a crop as input and returns a binary

26 2 METHODS AND MATERIALS

mask of the same size as the crop, which segments pixels based on whether they belong
to the corrupted area or not. The network is trained on manually annotated data, which
makes this a supervised learning problem. As previously mentioned, the annotation of
artifacts is deliberately done in a generous manner, to make sure the entire artifact is
always covered, without exceptions. This is because the area of the crop that is labeled as
uncorrupted, is copied over without changes to the final painting. It is better to cut out
too much and have the network repair a larger section than to end up with small sections
of corrupted tissue. By annotating in a generous manner consistently, the network learns
to cut out the artifacts generously as well. Especially when the artifacts contain some
form of blur, the exact border between corrupted and uncorrupted areas is not always
clear.

The network here is a variation of the modular U-Net from section 2.1. It omits inpaint-
ing specific parts such as the gated convolutions and the dilated convolutions in the
bottleneck, as well as features intended for GANSs such as spectral normalization and
LeakyReLU activation layers. Everything else is present as described in section 2.1. The
width parameter of the model, which determines the number of output channels of the
input block, is set to 32. For all non-1x1 convolutions, the kernel size is set to 3x3 and
padding mode is "reflect’. This results in 471,809 learnable parameters.

For training, the loss function is the Binary Cross Entropy with the model output as the
input and the annotation as the target. This effectively treats each pixel as the probability
of it belonging to the corrupted region. This objective showed better training behavior
compared to L1 or L2 distance between input and target as the loss function.

2.5 Artifact Reparation in Cell Segmentation Images - Binary Inpainting

This section provides a detailed description of the Binary Inpainting stage. Model and
training details as well as hyperparameter choices can be found in section A.1.

Hne

Masked KDE

Density Inpainting KDE Painting Center Locations

J Condition W

SR T — Y A

Incomplete Completed 4 L
Fourier Format Shape Inpainting Fourier Format Binary Painting

. n

L Binary Inpainting

Figure 14: Overview of the Binary Inpainting stage. The Density Inpainting network is
based on the U-Net model [30] with skip connections between the encoder and decoder
sections. The Shape Inpainting network is the cGlow model [24], applied to a cell seg-
mentation image in the Fourier format.

2.5 Artifact Reparation in Cell Segmentation Images - Binary Inpainting 27

This stage acts as a supporting step to the Image Inpainting stage. It is responsible the
generation of locations and shapes for the new cells ahead of the full Image Inpainting
and provides this as an additional input. This implies that this stage is responsible for
the achievement of good cell statistics in the final painting, while the Image Inpainting
stage is responsible for the visual quality. To achieve this, a separate inpainting task
is performed on a cell segmentation image. This is a binary image where each pixel
is assigned a label based on whether it was part of a cell body in the input image. The
segmentation is performed by the CPN network [36]. This effectively removes all textural
information from the image and leaves only the semantic content with respect to cell
bodies, see figure 15.

Figure 15: Left: A 384x384 crop of a brain scan with a spatial resolution of 1 micron per
pixel. Right: The corresponding cell segmentation image from the CPN network [36].

A major deviation from the common image inpainting framework here is the use of a
more specialized data format. Section 2.5.1 introduces the Fourier format from [36]. Us-
ing this format, the cell segmentation of a brain scan of arbitrary size can be described
with a matrix of Fourier coefficients containing one vector of length 4-N+2 for each seg-
mented cell. Appropriate values for N range from 2 to 6 which results in a drastic reduc-
tion in dimensionality compared to the regular 2d-image data format, see figure 16.

Because the location of a cell, i.e. the x- and y-coordinate of its center, is a highly relevant
feature and is described with an extremely small amount of information, the generation
of locations for new cells is split from the rest of the Binary Inpainting stage. Given
the locations of all segmented cells in the segmentation image, a 2-dimensional Kernel
Density Estimate (KDE) is computed. The KDE of the masked segmentation image serves
as input and the KDE of the ground truth segmentation image serves as target to a regular
image inpainting task. Note that this step already determines the number of generated
cells for final painting. This Density Inpainting step is described in detail in section 2.5.2.

Given the locations generated by the Density Inpainting step, together with the locations
of segmented cells from the uncorrupted area, the second step is to generate shape in-
formation for the new cells. This is called Shape Inpainting. Here, a Normalizing Flow
model tries to model the conditional, high-dimensional distribution of segmented cell
shapes as accurately as possible. The segmentation images for the input and target for
the network are presented in the Fourier format as a matrix of Fourier coefficients. Details

28 2 METHODS AND MATERIALS

N el pa(204)

Figure 16: Left: A labeled cell segmentation image from the CPN network [36]. Right:
The representation of this image via the Fourier format. The matrix contains n rows of
Fourier coefficients, here 24+2 for each cell, where 24 is a hyperparameter. 2 coefficients
are the x- and y-coordinates of the cell center, the other 24 describe the shape.

on this step can be found in section 2.5.3.

2.5.1 Cell Contour Description via Fourier Series

A different way of describing segmented cell shapes in a parameterized way for neural
networks was proposed in [36]. Originally, [22] described a way of using the Fourier sine
and cosine transformations to approximate closed contours. The resulting method can be
used to elegantly describe the contour of segmented cells in a segmentation image. The
resulting representation in matrix form describes all cells of such a segmentation image
with far fewer parameters. The following is a formal definition of the Fourier format for
closed contours and an explanation of the computation of the Fourier coefficients for this
use case.

(a) N =1, 6d vector (b) N = 3, 14d vector (c) N = 8, 34d vector

Figure 17: Figure 2 and caption from [36]: Contour representation with different settings
of the order hyperparameter V. It defines the vector size of the descriptor that is given
by 4N + 2. The higher the order, the more detail is preserved. The 2d contour coordi-
nates are sampled from the descriptor space with Eq. 1. Even small settings of N yield
good approximations of odd and non-convex shapes, in this case human neuronal cells,
including a curved apical dendrite.

2.5 Artifact Reparation in Cell Segmentation Images - Binary Inpainting 29

A 2-dimensional Fourier contour of degree NV is described by the two functions:

=z

zn(t) = —+ (an cos(n2mt) + by, sin(n2mt))

n=

_ %
2

—

N
+ Z cn cos(n2mt) + dy, sin(n2rt))

n—=

M\o
W

with ¢ € [0,1]. At a fixed value t = £, the pair (zx(#),yn(f)) is a point on the contour.
We have x5 (0) = zx(1) and yn(0) = yn(1) and the functions are continuous, hence the
resulting Fourier contour is always closed.

The functions zn(t) and yn(t) are parameterized by the Fourier coefficients

(a, -y an), (b1, .-, bN), (€, -y), (d1, ..,). Given an initial contour (fz(t), £y ())se[0,1)/
we can compute these coefficients with the formulas:

1
an = 2/ fz(t) cos(n2mt)dt
01
by = 2 / F.(8) sin(n2rt)dt
01
Cn = 2/ fy(t) cos(n2mt)dt
0

1
dp, = 2/ fy(t) sin(n2mt)dt
0

The hyperparameter N, called order in [36], controls how good the approximation of

~n(t) to fu(t) and yn(t) to fy,(t) is. Higher orders introduce higher frequencies in the
exponential (or trigonometric) terms of the Fourier series and allow for modeling of more
complex shapes. With large enough finite IV, any smooth function f(t) can be exactly
written as a Fourier series. If we allow infinite IV, we can express non-differentiable and
even non-continuous functions as a Fourier series, as long as the Dirichlet conditions are
satisfied.

Some additional explanation and intuition on why the above formulas hold true and
why this is a very elegant way to parameterize an almost! arbitrary closed contour can
be found in section A.2 in the appendix.

In practice, the coefficients a,, by, ¢, and d,, for n = 1,..., N can be computed via an
approximation of the above integrals from [22]: For p = 1, ..., K, let z,, be a point on a

!The existence of a Fourier series is characterized by the Dirichlet conditions. Since we are dealing with
continuous and closed contours, these are always satisfied and investigating these conditions is not useful
here.

30 2 METHODS AND MATERIALS

contour f with f(t,) = z, and t, € [0, 1]. Then

1 K Az,
2.2
2N?27 = Aty

an = (cos(2Nmt,) — cos(2Nt,_1))

A P (sin(2Nnt,) — sin(2Nnt,_1))

x
by, =
2N272 Z Aty
p=1
1 Ay
Cn = 532 2 A, L (cos(2Nnt,) — cos(2Nmt,—1))
K
1 A
dy = U (sin(2Nrt,) — sin(2N7ty_1))

2.9
2N27 = At,

The offset-coefficients ag and ¢y are computed via

X Az,
ao = Z (t 1) + &ty —tp-1)

2At,
1
Ay,
COZZ2Atp(t —1) + 0p(tp —tp1)
p=1
with
p—1
Az
&=> A p}:Ag
j=1
p—l Ayp
op= Ay;— z:At
j=1
and

&1=0=0

The CPN network [36] that is used in this thesis for cell segmentation uses these formulas
for the computation of Fourier coefficients.

2.5.2 Density Inpainting

The location of segmenteds cell in a segmentation image is a highly relevant feature that
can be described perfectly with very little information: The x- and y-coordinate of its
center. Various definitions of the cell center work here. Conveniently, the Fourier coeffi-
cients ag and by describe exactly this. The Density Inpainting step is performed purely
on the locations of the centers of the segmented cells. The goal is to sample new cell lo-
cations in a way that conforms to the density of segmented cells from the ground truth
segmentation image.

2.5 Artifact Reparation in Cell Segmentation Images - Binary Inpainting 31

In its naive setup, this problem exhibits an extreme case of the superposition problem.
The ground truth provides feedback on where the segmented cell center locations are,
but there is no way of inferring these correctly from the masked segmentation. Because
of the 2-dimensional from of the data here, we can modify it to reduce the impact of the
superposition problem. A 2d binary image that only contains center locations of seg-
mented cells can be interpreted as a sample from a cell density for this crop. We can
approximate this density by computing a 2-dimensional Kernel Density Estimate (KDE)
on this crop. Doing this on such binary center images of the ground truth segmentation
and masked segmentation provides target and input for a regular image inpainting prob-
lem. Unlike other image inpainting tasks however, this one does not require a generative
model since the stochasticity has been removed already. The network learns directly on
the density. By not requiring the network to generate exact locations of new cells, the
superposition problem is alleviated and the network is be able to infer the target image
from the input image with a high degree of accuracy.

Center Locations of Segmented Cells Kernel Density Estimate (KDE)

-

Figure 18: Left: A binary image of center locations of segmented cells. Right: The Kernel
Density Estimate of the left image using Gaussian filters with bandwidth 30/4. Both
images have been reduced in size by a factor of 4 along each dimension compared to the
original segmentation image.

The KDE is performed by applying a multidimensional Gaussian filter to the binary im-
age of center locations of the segmented cells. Ideally, in the center locations image and in
the KDE image, each pixel value can be interpreted as the probability of this pixel being
the center of a segmented cell. Applying a raw Gaussian filter means we lose some of
this probability mass around the image borders though. Performing the KDE on a much
larger image crop would remove this issue, because neighboring segmented cells from
slightly outside the border of our smaller crop add some probability mass to the border
region of the smaller crop. To approximate this effect, a reflect mode is used in the com-
putation of the KDE. Probability mass that would land outside the crop is reflected back
into it. The result is an equal amount of probability mass in the center locations image
and the KDE image. Crucially, a pixel-wise sampling that sets a pixel to 1 with the proba-
bility of its previous value, results in the correct amount of generated cells in expectation.
The standard deviation of the Gaussian kernel is a hyperparameter choice.

Before the KDE is applied to an image of center locations, the image is downscaled along

32 2 METHODS AND MATERIALS

both axes by a factor of 4. This greatly reduces the computational cost of the training pro-
cess for this step with minimal drawbacks. Technically, this introduces two limitations: It
limits the number of total centers an image can contain. Because the number of pixels in
a regular crop far exceeds the common number of cells in it by a much larger factor than
16, this is not an issue. The second limitation is that centers can’t be placed right next to
each other, but have at minimum 3 pixels in between them. Since this is physically not
very feasible in the first place, this is also rather negligible.

The employed model here is another variation of the modular U-Net architecture from
section 2.1. Because the task is effectively an inpainting task, the network features gated
convolutions. The dilated convolutions in the bottleneck have been omitted because of
the image size reduction of every KDE image. For example, a crop of size 256x256 results
in an 8x8 feature dimension in the bottleneck. The GAN specific features, spectral nor-
malization and LeakyReLU activation, are omitted as well. The width parameter is set
to 8 and all non-1x1 convolutions have kernel size 3x3 with standard zero-padding. This
results in a modest 229,113 learnable parameters.

Masked Kernel Density Estimate (KDE) KDE Painting

Figure 19: Left: The Kernel Density Estimate of the masked image of center locations of
segmented cells from figure 18. Note the darker region to the right of the image center.
Right: The KDE painting, which is a composition of the original pixels from outside the
masked area and the network output for the pixels inside the masked area.

After the network has completed the masked KDE image to feasible KDE painting, the
last step is to convert this back into an image of center locations. Since we already know
the center locations from all segmented cells from outside the masked area, we only need
to focus on the KDE inside the masked area. Because of the setup here, we can interpret
a pixel value in the KDE as the probability of this pixel being the center of a segmented
cell. We can iterate a simple sampling process through each pixel in the masked area,
where it is set to 1 with the probability of its previous value. In expectation, the resulting
number of generated cells here is equal to the sum over all pixels from the masked area.
Assuming the network did a perfect job, this is even equal to the number of segmented
cells from the ground truth, still in expectation. The simplicity of this process is what
enabled the split into Density Inpainting and Shape Inpainting in the first place.

2.5 Artifact Reparation in Cell Segmentation Images - Binary Inpainting 33

2.5.3 Shape Inpainting

Now that we have locations for the generated cells, we need to generate shapes for each
one. The resulting completed Fourier matrix can then be converted into a binary paint-
ing, the result of the Binary Inpainting stage. This task exhibits the superposition prob-
lem similarly to the Density Inpainting step. The difference is that the distribution of
shapes of the segmented cells is more complex and higher dimensional than the distribu-
tion of locations of segmented cells. In the Fourier format representation, all coefficients
but two, ag and ¢y, describe the shape of a segmented cell. Recall that the aim of the
Binary Inpainting stage is to model the cell statistics of a crop as accurately as possible.
Conceptually, this makes Normalizing Flow (NF) models an attractive approach here.
Because of their tractability of the exact log-likelihood and subsequent optimization by
directly maximizing the log-likelihood of data samples, they are the model class of choice
for this step. Their main drawback is strong limitations in architectural design, because
every layer needs to be invertible in an efficient way. This poses a challenge for very
high dimensional data, such as natural images, where large and specialized architectures
achieve the best results. The use of the Fourier format, as an already very elegant repre-
sentation, fundamentally enables the use of NF models here.

Masked Segmentation Binary Painting

Figure 20: An inference examples of the Binary Inpainting stage, with crop dimensions
are 256x256. The masked region is highlighted for legibility purposes.

A small challenge here is the application of NF models to an inpainting task. The differ-
ence to classical applications of NF models is that inpainting is a conditional task, where
the uncorrupted region of a crop serves as a condition. Luckily, maximum likelihood
methods naturally extend to conditional maximum likelihood methods by conditioning
all considered distributions. This applies to VAEs as well as NF models. [24] proposed a
conditional version of the popular Glow method [17] that can also be used for inpainting.
This method, called cGlow was employed for the Shape Inpainting step with no archi-
tectural modifications. It was only slightly modified to work with the Fourier format and
new hyperparameter tuning was performed (see section A.1).

The cGlow method uses the three basic layers from the Glow method: Actnorm, 1x1 con-
volutions and affine coupling layers, but in a conditional version respectively. To achieve
this, a conditioning network is used, which is a basic convolutional network that does
not need to be invertible. For the conditional actnorm and conditional 1x1 convolutions,

34 2 METHODS AND MATERIALS

the conditioning network is used to generate the parameters for these layers. Hence,
the learnable parameters are the ones of the conditioning network and not the ones of
the main layers. For the conditional affine coupling, the conditioning network extracts
features from the condition x and these are used as an additional input to the regular
network of the coupling layer.

Another small challenge here is the variable size of the Fourier matrix. The amount of
segmented cells in a crop determines the amount of rows in the Fourier matrix, resulting
in a potentially different input size for every example. Only very specific architectures,
like Transformers, can deal with variable input sizes, which severely limits the architec-
tural choice here, especially for NF models. The solution is to keep the architecture and
instead modify the Fourier format to have a constant size. This is accomplished by de-
termining a feasible maximum number of segmented cells for a crop of a given size, and
then pad the Fourier matrix with zero-rows up to this maximum size. The choice of this
maximum length is a hyperparameter that presents a tradeoff between training sample
efficiency (throwing away too many samples) and model performance (introducing too
much padding). In the event that a crop exceeds the maximum number of segmented
cells, it is removed from the current batch.

2.6 Artifact Reparation in Histological Sections - Image Inpainting

This is the third and last stage of the Neural Inpainting pipeline. While the Artifact Local-
ization provides a binary mask, segmenting corrupted and uncorrupted pixels, and the
Binary Inpainting provides a binary painting containing information on the locations and
shapes of newly generated cells, this stage performs the actual inpainting on a masked
version of the original crop. The binary mask and binary painting from the previous two
stages are used as additional inputs to the network here. Because the semantic (w.r.t. cell
bodies) part of the inpainting is already done in the Binary Inpainting stage, this stage
needs to mostly generate textural information and aims to achieve a visually convincing
result. Wile this stage leads to a deterioration of the accuracy of the cell statistics, com-
pared to the binary painting, this is not a big concern because these cell statistics can be
directly extracted from the binary painting when they are of interest. See figure 21 for an
overview of this stage.

This task is very similar to common inpainting tasks on natural images and is approached
accordingly. The modular U-Net (section 2.1) was primarily designed for this task and all
its features are employed here. Exact details on the network architecture, including hy-
perparameter settings, can be found in section A.1. A large number of random examples
are displayed in section A.3.

Pixel-wise Weighted Reconstruction Loss One difference to a usual GAN setup for
natural images is the implementation of the reconstruction loss. Usually, some form of
distance measure in pixel space, e.g. Ll-distance, is used as a loss term in addition to
the adversarial loss. This doesn’t work here because of the severity of the superposition
problem with this data. With a vanilla L1 loss the inner regions of the generated content
becomes too blurry or doesn’t form texture at all. When applying a weight smaller than
1 to improve the balance between adversarial and reconstruction loss, the regularization

2.6 Artifact Reparation in Histological Sections - Image Inpainting 35

Generator

. L Discriminator
Binary Painting Pixel-wise

Image Inpainting Discrimination

[‘ Gated Convolution @ Gated Dilated Convolution O Concatenation]

Figure 21: Overview of the Image Inpainting stage. Both networks are based on the U-
Net model [30]. They employ skip-connections, which are not depicted in this figure.
During inference, only the generator is used.

effect of the reconstruction loss disappears together with its problems. Instead, a pixel-
wise weighted reconstruction loss is used. The importance of each pixel is weighted
based on its distance to the nearest uncorrupted pixel. The effect is that the border re-
gions of the corrupted area receive feedback from the reconstruction loss while the inner
regions don’t. Note that this is applicable to arbitrary mask shapes, even when they are
disjoint. For this method, only 0 and a fixed w € [0, 1] are viable weights, with all pix-
els within a threshold distance from the nearest uncorrupted pixel having the weight
w. This threshhold and w are hyperparameters that are fixed during training runs and
provides control of the amount of regularization via the reconstruction loss. This formu-
lation of reconstruction loss provides meaningful feedback to pixels where this is feasible
but avoids the pitfalls of the superposition problem with L1-loss. The goal is a smooth
and convincing transition between original and generated pixels in the final painting.

Conditioning on the Binary Painting To ensure that the generator correctly includes
the information from the binary painting into the image painting, it is given to both net-
works as a conditional input. This way, the discriminator has an easy way to find out
where the generated area is by checking the existence of cells in the correct locations. The
discriminator learns to do so early on in training and the generator subsequently learns

36 2 METHODS AND MATERIALS

to avoid this form of discrimination.

Noise Injection In the original GAN setup on a non-conditional task, the input to the
generator is a noise vector. Since inpainting is a conditional task where the generator
receives the incomplete image as input, it is unclear how to include noise in this setup,
if at all. There are various approaches to this, like adding noise to the data, providing
an additional input channel that contains random noise or even a layer-wise injection of
noise [16]. In this method, the generator always received an additional channel of noise
drawn from a standard-normal distribution with the same dimension as the input image.
The Style-GAN layer-wise noise injection didn’t show any meaningful improvements in
the generator outputs. This might be due to the different kinds of features present in
histological images compared to natural images.

37

3 Experiments

This section provides a range of experiments to test and compare the performance of the
models from the Neural Inpainting pipeline with respect to the research objective. It is
structured by experiments rather than models and is sectioned into four parts: Section
3.1 contains experiments and evaluations for the Artifact Localization stage. Sections 3.2
to 3.5 provide quantitative experiments, while section 3.6 shows qualitative evaluations
for the Binary Inpainting stage. Lastly, section 3.7 provides a qualitative evaluation of the
Image Inpainting stage. The discussion in section 4.1 afterwards interprets these results
by focussing on individual models and their pair-wise comparisons.

Besides the Artifact Localization (AL), Density Inpainting (DI), Shape Inpainting (SI) and
Image Inpainting (II) models from section 2, there are three additional models featured
in this section. They provide comparison and experimental motivation for the use of the
four models in the Neural Inpainting pipeline. Model and training details can be found
in the appendix in section A.1.

Binary Inpainting GAN As described in section 2.3.4, the naive approach to the Binary
Inpainting stage would be a GAN based Inpainting model. Conceptually, this is very
similar to the Image Inpainting model, but the segmentation images are a very different
type of data than the full brain scans. This GAN model is based on the modular U-Net
from section 2.1, the architecture and hyperparameters are detailed in the appendix in
section A.1.

Shape Inpainting with VAEAC Alternative to the cGlow model introduced in section
2.5.3, a conditional VAE model for Inpainting was implemented and modified to work on
the Fourier Format. It is based on the VAEAC model [13] with minor modifications and
was employed in the exact same setup as the cGlow model. This includes the masking
process, the Fourier format, the crop dimension, the amount of padding in the Fourier
format and the evaluation process. Note that this is a fully convolutional architecture
which is a suboptimal inductive bias for the Fourier format, since information in this
data representation is not distributed as locally as in 2d-images. The use of the Fourier
format still proved to be an improvement though, compared to using the regular cell
segmentation images.

The VAEAC model is a conditional variant of the regular VAE model [20]. The VAE
problem setting naturally extends to a conditional one, because it is a maximum likeli-
hood approach. The variational lower bound (ELBO) in the conditional setting can be
derived in the same way, by conditioning all involved distributions on a condition y:

L(0, ¢, 2,y) = —Dkrlas(zlz, y)||py (21y)) + By, (2|2,y) log pa(z]2,y) < logpey(z]y)

The prior distribution py(z|y) is conditioned on y and now modeled by a neural network
with parameters 1, the prior network. Hence, we now have a prior network parame-
terizing p,(2|y), a proposal network parameterizing ¢, (z|z,y) and a generative network
parameterizing py(z|z,y). The two encoders, the prior and proposal networks, always
receive the condition as input, the proposal network additionally receives the target. The

38 3 EXPERIMENTS

KL-Divergence term in the objective is between the two encoders, next to the reconstruc-
tion loss of the output of the decoder. The encoders’ distributions are Gaussian, which
enables the use of the reparameterization trick to compute the KL divergence analytically.

There are two figures for each evaluation statistic of the VAEAC model, because there is
an important choice in the final sampling process of the model. The decoder parameter-
izes a multivariate Gaussian distribution with diagonal covariance matrix and the default
setting is to return the mean of this distribution as the final output of the model. Alter-
natively, one can sample from the distribution and thus increase the variety in model
outputs. Because this has a very strong effect on the evaluation statistics and the sample
quality, both settings are examined.

Image Inpainting without Binary Inpainting This model is very similar in architecture
to the Image Inpainting model from section 2.6. It was tuned and retrained without
additional inputs from the Binary Inpainting stage. Section A.1 contains information on
the model and training details. As this one and the regular Image Inpainting model don’t
appear in the same experiments, both are referred to as ‘Il model” at various points in this
chapter.

For this model, we can evaluate the same statistical properties as for the Density and
Shape Inpainting steps by computing cell segmentation images from the paintings. Given
such a cell segmentation image, we can remove all segmented cells outside the cor-
rupted area and compute statistics such as segmented cell count, size and eccentricity.
Importantly, the fact that we compare two unprocessed cell segmentation images from
the CPN network here might favor this model. The cGlow and VAEAC models process
the segmentation images, instead of real crops, and thus have a harder job of matching
the ground truth segmentation images. These models can produce shapes that the CPN
network wouldn’t, because it has never seen image paintings like those from the Image
Inpainting model, only real crops.

Experiments with this model motivate the choice to develop the Binary Inpainting stage,
as described in section 2.3.3.

3.1 Artifact Localization

The Artifact Localization stage is a supervised learning task on manually annotated data.
It is the least complex and easiest to optimize network of the Neural Inpainting pipeline.
Because the goal here is to generate 2-dimensional binary masks that segment the cor-
rupted from uncorrupted pixels, there are no quantitative evaluation metrics apart from
the label coverage or accuracy. The validation and evaluation of the quality of the net-
works was mostly performed using the test loss and visual quality as indicators for per-
formance.

Quantitative Evaluation The final model achieved an average segmentation accuracy
of 97.8%. Note that an error of 1% corresponds to 1475 wrong pixels for the crop dimen-
sion 384. See figures 23 and 24 for some example images together with their segmentation
accuracy. Everything below 90% can be seen as a bad inference example just by judging

3.1 Artifact Localization 39

Segmentation Accuracy

1200+ W= Sample Accuracy
=== Mean Accuracy

1000

800 -

No. of Occurences

400 -

200 A

[—

80.0% 82.5% 85.0% 87.5% 90.0% 92.5% 95.0% 97.5% 100.0%
Annotation Coverage (bin size 0.002)

Figure 22: Artifact Localization segmentation accuracy evaluation on a run of 10000 ex-
amples with crop dimension 384. The segmentation accuracy is the percentage of equal
pixels in model output and annotation. 100% means the model’s output was identical to
the annotation, not just that the masked area was fully covered.

visually. Around 5.4% of the 10000 examples are below 90% accuracy and around 10.7%
are below 95% accuracy.

Qualitative Evaluation Judging from visual quality, the Artifact Localization stage
works as expected, although the results heavily depend on the type of artifact. There
is a large variety of possible artifacts and some are segmented better than others. This
strongly suggests that the size and diversity of the dataset is the performance bottleneck
here, more on that in section 4.1. Figure 23 shows an example of an artifact that is seg-
mented almost perfectly and figure 24 shows an example of an artifact that the network
has problems segmenting.

Crop Annotation Artefact Prediction
o e -

Figure 23: Artifact Localization sample from the artifact dataset. The sample is a 384x384
crop from a test scan that was not part of the training set. The large artifact is segmented
with a high accuracy of 98.0%.

Typically, artifacts that cause a blur of their surrounding region tend to be problematic,

40 3 EXPERIMENTS

because the blurred area still contains texturally correct content which might be seg-
mented as uncorrupted. A larger collection of examples can be found in section A.3.

Annotation Artefact Prediction

Figure 24: Artifact Localization sample from the artifact dataset. The sample is a 384x384
from a test scan that was not part of the training set. The blurry nature of the artifact
causes problems for the network and results in a segmentation accuracy of only 86.9%.

3.2 Cell Count in Repaired Cell Segmentation Images

The first evaluation statistic is a comparison between the segmented cell count of ground
truth crops and paintings. Each evaluation run includes 10000 examples with crop di-
mension 256 from scans from the intact dataset that were not seen during training. All
plots and values below consider the corrupted areas only, unless specified otherwise.
Two models are tested here, the Density Inpainting model from section 2.5.2 and the
Image Inpainting model without binary paintings as additional input. There is an alter-
native evaluation scenario for the DI model, where the sum of probability mass from the
KDE inpainting is used, instead of the cell count after sampling. Because of the 1-to-1
correspondence of probability mass in the KDE images and cells in the segmentation im-
ages, this is gives insight into the exact amount of predicted cells, without the variance of
the sampling process.

Each of the three scenarios has a separate evaluation run, but figures 25 and 26 display
results from the same run for (a), (b) and (c) respectively.

There are two experiments here, one looking at the overall distribution of segmented cell
counts without comparing ground truth and paintings directly to each other. For the first
experiment, the results from all examples of the run are accumulated separately and plot-
ted as histograms, box plots and plots that show the differences between corresponding
bins in the histograms. These results are shown in figure 25.

3.2 Cell Count in Repaired Cell Segmentation Images

Sgm. Cell Count Distribution

== Crop
7001 B Painting
600 -
0
[
9]
€ 500
S
=1
9 400
¢}
‘5 300
<]
= 200
100
04
60 40 20 0 20 40 60
Sgm. Cell Count (bin size 2)
Probability Sum Distribution
800+ mm Crop

mm Paintin

No. of Occurences

60

40 20 0 20 40 60
Probability Sum (bin size 2)

Sgm. Cell Count Distribution

)

m Crop
s Paintin

No. of Occurences

60 40 20 0 20 40 60
Cell Count (bin size 2)

Difference in No. of Occurences

(@) Full Density Inpainting model

Difference in No. of Occurences

(b) KDE image probability sum

Difference in No. of Occurences

300

250

200

150

100

o

0

0

=50

—100

300 4

250 4

200 4

1501

100 4

50

300

250 1

2001

1501

100

50

-50

Sgm. Cell Count Difference

W Painting - Crop

0 10 20 30 40 50 60 70
Sgm. Cell Count (bin size 2)

Probability Sum Difference

B Painting - Crop

0 10 20 30 40 50 60 70
Probability Sum (bin size 2)

Sgm. Cell Count Difference

B Painting - Crop

I

0 10 20 30 40 50 60 70
Sgm. Cell Count (bin size 2)

70 A

60

50 q

40

301

201

701

60

50 1

40

301

204

701

60 -

50 q

40

301

204

41

Average Sgm. Cell Count

8

Crop Painting

Average Probability Sum

o

Crlop Painlting

Average Sgm. Cell Count

Crlop Painlting

(c) Image Inpainting without Binary Inpainting

Figure 25: Results for the first segmented cell count experiment. The segmented cell
counts were accumulated for ground truth crops and paintings separately over the 10000
examples. (a) Results for the full DI step as described in 2.5.2. (b) Results for the DI step
when omitting the sampling at the end and replacing the segmented cell count with the
sum over the KDE image. (c) Results for the Il model that was trained without auxiliary
inputs from the Binary Inpainting stage.

Both models are able to learn the segmented cell count distribution reasonably well and
show similar results here. They are not able to capture the full variance of the distribution
from the ground truth data, which is clearly visible in the box plots. The mean however
is very accurate. Note that the segmented cell count for the DI model also contains noise
from the sampling process at the end of the Density Inpainting step. The network’s out-

42 3 EXPERIMENTS

put is a KDE matrix with a certain amount of probability mass. Figures 25 and 26 (b)
shows the error when comparing the probability mass between the KDE of the original
crop and the network’s output.

For the second experiment, the segmented cell count error (CCE) is computed. For each
pair of ground truth crop and painting, the absolute value of the difference in segmented
cell count is computed. The CCE is the average of these. The histograms in figure 26 are
computed on the values before averaging. This way, we can see how much of the CCE
can be attributed to the sampling noise of the DI step and how accurate the network’s
predictions are. The added variance from the sampling process leads to less accurate
results and an overall higher CCE. The Il model performs comparably to the full Denisty
Inpainting model here. A low mean in combination with a low standard deviation is
desirable here.

Difference in Avg. Sgm. Cell Count Difference in Avg. Probability Sum

W Painting - Real Crop

Difference in Avg. Sgm. Cell Count

W Painting - Real Crop

1600 W Painting - Real Crop 3500 1600

1400 3000 1400

-
o
S
S

No. of Occurences
©
3
3
No. of Occurences
e
9]
S
3

N
&
<)
S

1000 1000

o
3
8
No. of Occurences
©
3
3

IS
=3
3

IS

=3

3

~
o
S}
o
S
3
~
o
S}

o0l
-80 —60 -40 -20 O 20 40 60 80
Difference (bin size 2)

(b) DI KDE

-60 —40 -20 0 20 40 60
Difference (bin size 2)

(a) DI

-60 —40 -20 0 20 40 60
Difference (bin size 2)

(c)lTw/oBI

Figure 26: Results for the second segmented cell count experiment. The absolute value of
the difference in segmented cell count between ground truth crop and painting is taken
for every example. (a) Results for the full DI step as described in 2.5.2. (b) Results for the
DI step when omitting the sampling at the end and replacing the segmented cell count
with the sum over the KDE image. (c) Results for the II model that was trained without
auxiliary inputs from the Binary Inpainting stage.

Table 1 contains the results from both experiments for easy comparisons. The slight bias
towards smaller amounts of segmented cells for the DI model is a consistent result and
not a training artifact.

CCE Mean | CCE Std | Avg. Count Painting | Avg. Count Real
DI 4.92 (3.93%) 4.35 18.0 19.0
DIKDE | 2.57 (2.06%) 2.94 17.9 19.5
ITw/oBI || 5.15 (4.12%) 4.55 18.5 18.7

Table 1: Results for the segmented cell count error (CCE) experiment. All computations
consider the corrupted area only. The CCE is the average over all examples of the abso-
lute value of the difference in segmented cell count between corresponding ground truth
crops and paintings. The percentage for the CCE mean is with respect to the total amount
of segmented cells in the ground truth crop, including the uncorrupted area.

3.3 Cell Size in Repaired Cell Segmentation Images 43

While the DI model has a lower CCE than the II model, it also is slightly more biased
when looking at the average segmented cell count over all examples.

3.3 Cell Size in Repaired Cell Segmentation Images

The second evaluation statistic is the size of generated cells compared to the ground
truth segmentation images. This gives a good indication for the accuracy of generated
cell shape information. Each evaluation run includes 10000 examples again, with crop
dimension 256 from scans from the intact dataset that were not seen during training. All
plots and values in this section consider the corrupted areas only, unless specified oth-
erwise. Besides the cGlow model for Shape Inpainting on Fourier matrices, from section
2.5.3, the VAEAC model and the Image Inpainting without Binary Inpainting model were
included in the experiments, the latter is referred to as the II model.

As mentioned at the beginning of the experiments section, there are two different set-
tings for the generation of samples for the VAEAC model. The decoder parameterizes
a multivariate Gaussian distribution with diagonal covariance matrix. One can either
take the mean of this distribution as a result or sample from it. These are referred to as
mean-return and sample-return settings.

The segmented cell sizes are not averaged per crop or painting, because that would hide
the variety of cell sizes within a segmentation image or painting. As a result, the his-
tograms contain a different amount of data points, as not all models generate the same
amount of cells on average. The important characteristic here is the shape of the dis-
tribution and the balance between small, medium and large cells, not the height of the
bars.

Similar to the segmented cell count section, there are two ways to evaluate the runs here.
For the first one, the segmented cell sizes are accumulated separately for ground truth
crops and paintings and then plotted as histograms, box plots and plots that show the
differences between corresponding bins in the histograms. These results are shown in
figure 27.

The learned distribution for the cGlow model shows very similar characteristics to the
segmented cell count from the Density Inpainting step, in that it is unable to capture the
full variance of the data distribution and has a slight bias towards smaller generated cells.
The ‘Segmented Cell Size Difference’ plot in figure 27 (a) illustrates this well. Segmented
cells with sizes around 60 pixels appear more frequently in paintings, while generated
cell sizes under 50 and above 100 pixels appear more frequently in the ground truth im-
ages. The bias here is a consistent result and not a training artifact. Section 4.1 discusses
possible reasons for this.

44 3 EXPERIMENTS

Sgm. Cell Size Distribution Sgm. Cell Size Difference 200 Average Sgm. Cell Size
o 0.10
-E 0.32 1 W Crop (0] W Painting - Crop
£ s Painting g
5 0.281 S 5054 250 - 8
= =1 : o
o %
S 0.24 o o
s} S ool | h 2001 8
- | .00 1 . s
g 02 & 1l T
o i @ 150 1 o
é 0.16 2 —0.05] o
5 0.121 £
§ g 100
O 0.08 1 £ ~0.107
[=
o (] 50 -
© 0.04 £
s 8 -0.15
< 0.0+ - : - T : - - 0 = .
400 300 200 100 0 100 200 300 400 0 50 100 150 200 250 300 350 400 Crop Painting
Sgm. Cell Size (bin size 5) Sgm. Cell Size (bin size 5)
(a) cGlow model for Shape Inpainting on Fourier matrices
Sgm. Cell Size Distribution Sgm. Cell Size Difference 200 Average Sgm. Cell Size
o
c P
E 04 L} Cr?p. 8 0.20 B Painting - Crop o
s - Painting g 250 4
< s
g S o015 8
O 03 o 200 4 §
b & 010
° g
8 g 1501
< 0.2 I 005
[< o
3 ° I 100
8 o 000 | |||||||
0.1 I
4 = 50 4
2 & —0.05
o kS
o a
< 0.0+ F . - , : : r - : :
400 300 200 100 O 100 200 300 400 0 50 100 150 200 250 300 350 400 Crop Painting
Sgm. Cell Size (bin size 5) Sgm. Cell Size (bin size 5)

(b) VAEAC model for Shape Inpainting on Fourier matrices with sample-return setting

Sgm. Cell Size Distribution Sgm. Cell Size Difference 200 Average Sgm. Cell Size
o
-é mm Crop 8 1.04 B Painting - Crop
-!._E 1.21 - Painting E 250 4 o
e S 0.819
© 1.01 o
s} C el 2001 Q
2 0.811 ?
g 2 0.4 150
g 0.6 g
0.2 100 4
O 0.4 ! |
< 5
& 024 g ooty ||||||||lllIII 504
2o £ T
[} a
Z o004 —0-21 T T r : - T T 0 . .
400 300 200 100 0 100 200 300 400 0 50 100 150 200 250 300 350 400 Crop Painting
Sgm. Cell Size (bin size 5) Sgm. Cell Size (bin size 5)
(c) VAEAC model for Shape Inpainting on Fourier matrices with mean-return setting
Sgm. Cell Size Distribution Sgm. Cell Size Difference 200 Average Sgm. Cell Size
o
-é 0.32 1 mm Crop 8 0.02 1 | B Painting - Crop
= W Painting = ||||||||
© @ 250 1 o
& 0.28 o
g 5 000, II_|||| | [T . °
2 0.24 1 8 | 8
g © -0.021 2007 0
g 0.2 g 8
% 0.16 g —0.04 150 A
= f=4
5 012 o —0.06 | 100 4
1% o
© 0.08 S
g 5 —0.08 50 1
© 0.04 1 LS
a
% 0.0 —e0q 0 . =
400 300 200 100 0 100 200 300 400 0 50 100 150 200 250 300 350 400 Crop Painting
Sgm. Cell Size (bin size 5) Cell Size (bin size 5)

(d) Image Inpainting without Binary Inpainting

Figure 27: Results for the segmented cell size experiment. (a) Results for the cGlow
model for Shape Inpainting, as described in 2.5.3. (b) Results for the VAEAC model with
the sample-return setting. (c) Results for the same VAEAC model, but with the mean-
return setting. (d) Results for the Image Inpainting model without auxiliary inputs from
the Binary Inpainting stage.

3.4 Cell Eccentricity in Repaired Cell Segmentation Images 45

The VAEAC model shows severe model collapse in the evaluation plots for the mean-
return setting. The model focuses on a very narrow range of cell sizes and the resulting
distribution does not have the same mean or mode as the ground truth one. The sample-
return settings fares better here, but still displays a strong lack of variance and a strong
bias towards smaller cell sizes. Both settings perform significantly worse than the cGlow
model.

The Image Inpainting model without Binary Inpainting displays the best variance out
of all models and is the only model that generates a reasonable amount of larger cells.
It does have a bias towards larger cell sizes though, not as strong as the VAEAC, but
significantly stronger than the cGlow model. See table 2 for a comparison.

For the second experiment, the segmented cell sizes are averaged and then compared
between corresponding ground truth crops and paintings, still considering the corrupted
areas only. Taking the absolute value of the difference in average segmented cell size for
an example results in the segmented cell size error (CSE). A low mean in combination
with a low standard deviation is desirable here.

CSE Mean | CSE Std | Avg. Size Painting | Avg. Size Real
cGlow 18.3 15.4 59.7 61.8
VAEAC mean 28.7 19.0 34.2 61.6
VAEAC sample 28.1 18.7 35.3 61.7
ITw/o BI 16.9 14.6 69.9 61.5

Table 2: Results for the segmented cell size error (CSE) experiment. All computations
consider the corrupted area only. The CSE is the average over all examples of the absolute
value of the difference in average segmented cell size between corresponding ground
truth crops and paintings.

The cGlow and II models clearly outperform the VAEAC when it comes to segmented
cell sizes. They display lower CSE values, with the IT model narrowly beating the cGlow
model, and have less bias when looking at the averaged segmented cell size over all
examples (without averaging over the crops and paintings individually). The cGlow
model is the only one without a significant bias here. It loses out on the CSE however,
because it’s not properly adapting to examples with large size average.

3.4 Cell Eccentricity in Repaired Cell Segmentation Images

The third evaluation statistic is the eccentricity of cell contours in the segmentation im-
ages. The eccentricity of an ellipse is the ratio of the focal distance (distance between
focal points) over the major axis length. The focal points of an ellipse are the pair of
points whose sum of distances to any point of the ellipse is constant. The eccentricity
is in the interval [0, 1) with the value 0 corresponding to a circle, because a circle’s focal
points are both in its center. It effectively measures how ‘stretched out’ the ellipse is. The
eccentricity of a segmented cell can be defined as the eccentricity of the ellipse with the
same second-moments as the closed cell contour.

46 3 EXPERIMENTS

6 —— Ellipse
@ Focal Points

Minor Axis

Major Axis
@
[-4,0] [4,0]

04 [-5,0]

[5,0]

—6

-6 -4 -2 0 2 4 6

Figure 28: An ellipse in standard position with the major axis along the x-axis. The
eccentricity is the ratio of the focal distance over the major axis length, here 8/10 = 0.8.

This can now be evaluated analogously to the segmented cell size. In the same way that
every segmented cell has a size, it has an eccentricity and we can compute the same eval-
uation statistics from this. There are again two experiments, with the same procedure as
in the segmented cell size section. Figure 29 shows results for the first experiment, where
the segmented cell eccentricities are accumulated for ground truth crops and paintings
separately and then plotted as histograms, box plots and plots that show the difference
between corresponding bins in the histograms. All runs include 10000 examples with
crop dimension 256 and consider the corrupted areas only. They were performed on data
from the intact dataset that was not seen during training.

The small peaks at 0 come from very small segmented cells that are displayed as a square
due to a lack of resolution. For the cGlow model, the overall distribution here is learned
well and shows no obvious flaws like a strong bias or less variance compared to the
ground truth distribution. This evaluation is especially useful to detect training collapse
in the model, because a collapsed model tends to only output similar shapes with very
little variation.

The VAEAC model performs overall very similar to the cell size statistic. The mean-
return settings results in a severely collapsed model that generated cells with one ec-
centricity value most of the time and the sample-return setting displays a strong bias
compared to the ground truth data. The plot for the sample-return setting hints at the
bad visual sample quality in the qualitative evaluation. The model tends to produce
sstetched out, thin cell contours, which results in an eccentricity distribution skewed to-
wards higher values. The segmented cell eccentricity is learned accurately.

3.4 Cell Eccentricity in Repaired Cell Segmentation Images

Sgm. Cell Eccentricity Distribution

W= Crop
mm Painting

-
=3

o
©

IS
IS

Average Occurence per Crop/Painting
o o
o >

o
o

10 0.5 0.0 0.5 1.0
Sgm. Cell Eccentricity (bin size 0.02)

Difference in Average Eccentricity

o
-

o
o

I
o
=

|
o
N

Sgm. Cell Eccentricity Difference

s Painting - Crop

0.0 02 04 0.6 08 10
Sgm. Cell Eccentricity (bin size 0.02)

0.8

0.6 9

0.4

0.2

0.01

47

Average Sgm. Cell Eccentricity

o
° o
o o
Crop Painting

(a) cGlow model for Shape Inpainting on Fourier matrices

Sgm. Cell Eccentricity Distribution

mmm Crop
- Painting

Average Occurence per Crop/Painting
o o o o = I
N = o =] o N

I3
5}

1.0 0.5 0.0 0.5 1.0
Sgm. Cell Eccentricity (bin size 0.02)

Difference in Average Eccentricity

o
o
o

o
N
[

o
=3
IS

—0.251

—0.50

-0.751

s Sgm. Cell Eccentricity Difference

B Painting - Crop

00 02 04 06 08 10
Sgm. Cell Eccentricity (bin size 0.02)

1.04

0.8

0.6

0.4+

0.2+

0.0

Average Sgm. Cell Eccentricity

Q
o
o
o
o o
Crop Painting

(b) VAEAC model for Shape Inpainting on Fourier matrices with sample-return setting

Sgm. Cell Eccentricity Distribution

= Crop
- Painting

w
w

w
=)

N
o

-
o

-
=

Average Occurence per Crop/Painting
o N
o °

3
5}

1.0 0.5 0.0 0.5 1.0
Sgm. Cell Eccentricity (bin size 0.02)

Difference in Average Eccentricity

o
=)

w

Sgm. Cell Eccentricity Difference

2.54

2.0

1.5

1.0

0.5

~0.54

~1.04

B Painting - Crop

00 02 04 06 08 10
Sgm. Cell Eccentricity (bin size 0.02)

0.8

0.6 1

0.4+

0.2+

0.0

Average Sgm. Cell Eccentricity

o

Crlop Painlting

(c) VAEAC model for Shape Inpainting on Fourier matrices with mean-return setting

Sgm. Cell Eccentricity Distribution

mmm Crop
mm Painting

-
=

o
®

o
IS

o
N}

Average Occurence per Crop/Painting
o
>

I3
5}

1o 0.5 0.0 0.5 1.0
Cell Eccentricity (bin size 0.02)

Difference in Average Eccentricity

o
o
N

o
=)
=1

—0.014

—0.054

5 Sgm. Cell Eccentricity Difference

s Painting - Crop

00 02 04 06 08 10
Cell Eccentricity (bin size 0.02)

0.8

0.6 4

0.4

0.24

0.0

Average Sgm. Cell Eccentricity

8
o o
Crop Painting

(d) Image Inpainting without Binary Inpainting

Figure 29: Results for the segmented cell eccentricity experiment. (a) Results for the
cGlow model for Shape Inpainting, as described in 2.5.3. (b) Results for the VAEAC
model with the sample-return setting. (c) Results for the same VAEAC model, but with
the mean-return setting. (d) Results for the Image Inpainting model without auxiliary
inputs from the Binary Inpainting stage.

48 3 EXPERIMENTS

The learned distribution for the II model here looks very similar to the ground truth
one, with no deficiencies when it comes to bias or variance. The average segmented cell
eccentricity of the paintings was very close to the ground truth average. While this and
the cGlow model both perform very well, the II model actually edges out the cGlow
model in this experiment.

The second experiment computes the same data as the first one, but averages the eccen-
tricities over a crop or painting and compares these averages by taking the absolute value
of the difference between them. Averaging the results of this over all examples yields the
segmented cell eccentricity error (CEE). A low mean in combination with a low standard
deviation is desirable here.

CEE Mean | CEE Std | Avg. Ecc. Painting | Avg. Ecc. Real
cGlow 0.06 0.05 0.68 0.65
VAEAC mean 0.12 0.1 0.57 0.65
VAEAC sample 0.15 0.07 0.80 0.65
II'w/oBI 0.05 0.05 0.64 0.65

Table 3: Results for the segmented cell eccentricity error (CEE) experiment. All compu-
tations consider the corrupted area only. The CEE is the average for all examples of the
absolute value of the difference in average eccentricity cell size between corresponding
ground truth crops and paintings.

Again, the VAEAC model is clearly outperformed by both, the cGlow and II model.
While the cGlow and II models are close in performance, the II model shows the best

results in the second experiment as well, with the least bias in average eccentricity and
the lowest CEE.

3.5 PCA on Fourier Matrices of Cell Contours

Completing the quantitative evaluation for segmentation images is a comparison of the
Fourier matrices via PCA. PCA is applied to the ground truth Fourier matrix and the net-
work’s output and the first two principal dimensions are plotted. Similar to the above,
only cells from the corrupted area of a crop are being considered here, for both ground
truth and network output. While this doesn’t have as clear of an interpretation as seg-
mented cell sizes or eccentricities, it is a good way of comparing the variance in the pa-
rameters themselves and see if the network is able to model dependencies within the
data.

The 10000 examples were stacked into two large matrices with shape (n_examples,
4-order). The PCA was computed on the ground truth matrix only and then the dimen-
sionality reduction was applied to both matrices. Still, only segmented cells from the
corrupted areas are taken into account here.

3.5 PCA on Fourier Matrices of Cell Contours 49

PCA Plot
20

e Crop
® Painting

154

104 P

Second Principal Direction
o

-104

—154

-20 T T T T T T T
-20 =15 -10 =5 0 5 10 15 20
First Principal Direction

Figure 30: A plot of the first two principal components of the Fourier matrices of ground
truth crops and paintings from the cGlow model. The PCA was computed on the ground
truth matrices and the dimensionality reduction applied to both matrices.

This plot clearly shows what was partly seen in the previous quantitative evaluations,
namely that the model is unable to capture the full variance in the data. Also, while the
data points from the ground truth data are asymmetrically distributed, they are of course
perfectly 0-centered. The component-wise mean of the model’s data points is slightly
off-center with [0.32,0.01].

Figure 31 shows the PCA results for the VAEAC model. Once again, the mean-return
settings displays a severe lack of variance, while the sample-return settings fares much
better in this regard. From the PCA plot alone, the VAEAC model performs comparably
to the cGlow model in this experiment.

PCA Plot PCA Plot
20 20

e Crop
® Painting 15

154

Second Principal Direction
o
[n’
o
Second Principal Direction
o

—151 “151 e crop

® Painting

-20 -20
=20 =15 -10 -5 0 5 10 15 20 =20 =15 -10 -5 0 5 10 15 20
First Principal Direction First Principal Direction

(a) VAEAC mean-return setting (b) VAEAC sample-return setting

Figure 31: 2 Plots of the first two principal components of the Fourier matrices of ground
truth crops and paintings from the VAEAC model. The PCA was computed on the
ground truth matrices and the dimensionality reduction applied to both matrices.

50 3 EXPERIMENTS

3.6 Qualitative Evaluation of Binary Inpainting Models
3.6.1 Density Inpainting

The Density Inpainting step is responsible for the generation of information on the
amount and the placement of new cells, given the cell segmentation image of a masked
crop. The quality of the generated content can be judged by two criteria: The overall
amount of new cells, which should be coherent with the uncorrupted part of the image,
and the placement of these cells relative to the uncorrupted part of the image, i.e. con-
forming to high and low segmented cell density areas within the crop. The former was
evaluated in the segmented cell count section and the latter is addressed in the qualitative
evaluation.

Regardless of the performance of the Density Inpainting network, it is important to men-
tion that without this step, the Shape Inpainting via Normalizing Flow models wouldn’t
be possible in its current form. This is because the Shape Inpainting model is unable to
sample the number of generated cells. It can only assign Fourier parameters, including
a location, to a given number of new cells, making the split into a two-step process nec-
essary. Of course, there are ways to approach this problem differently, but that would
result in a complete redesign of the Binary Inpainting stage.

The second desired criterion for the Density Inpainting model, the accordance with high
and low density regions within a crop, proved difficult to evaluate in a quantitative man-
ner. This criterion is also less important than the overall segmented cell count, because
very few crops have area with considerably different segmented cell densities due to the
rather small crop dimension. When training the Neural Inpainting pipeline on larger
crop dimensions, e.g. 512 or higher, this aspect of the Density Inpainting results becomes
more significant.

That being said, the results here a clearly suboptimal, as the masked area in the paintings
(composition of network output and ground truth KDE) are always very easy to spot.
One reason for this is that the unmasked areas in the ground truth KDE and the masked
KDE that the network receives as input are different. To simulate the inference process,
the input images for training have to be masked first, before the KDE is computed. Hence,
the global influence of the segmented cells from the masked area is present in the ground
truth KDE, but not in the masked KDE. The training of the Density Inpainting model
is thus not a classical inpainting task, where a missing part of the input image needs to
reconstructed. Instead, the network needs to infer what the masked area from the ground
truth image looked like, given the masked KDE which is different in the entirety of the
image, not just to masked area.

Another shortcoming here is that the superposition problem is still present, although
much less severe than without the KDE format. The network does tend towards more
uniform solutions and is sometimes averse to continuing visible structures from the un-
corrupted part of the masked KDE, see figure 33 for an example.

3.6 Qualitative Evaluation of Binary Inpainting Models 51

Ground Truth Masked KDE KDE Painting

Figure 32: A training example from the Density Inpainting model. The masked KDE is
the result of computing a KDE on an image of segmented cell locations, where the cells
within the masked area have already been removed. The KDE painting is a composition
of pixels from the model’s output and the ground truth image, not the masked KDE. This
painting is for evaluation purposes only, since only the masked area has to be sampled
from during inference.

Ground Truth Masked KDE KDE Painting

Figure 33: A training example from the Density Inpainting model displaying a rather
uniform section in the corrupted area of the painting.

3.6.2 Shape Inpainting

The second step of the Binary Inpainting stage, the Shape Inpainting, generates informa-
tion on the shape of the new cells, given their amount and center locations. It does so by
filling in missing values in the Fourier format of the cell segmentation image. The results
here can be evaluated in many different ways, since a distribution of shapes is difficult to
quantify. The quantitative evaluation segment provided three different statistics to evalu-
ate the performance of the Shape Inpainting step: A ground truth to painting comparison
with segmented cell sizes, segmented cell eccentricities and a PCA of the Fourier format.
A qualitative evaluation by visually inspecting examples still provides additional insight
here. It can expose the occurrence of unwanted patterns and check the coherence of cell
shapes within a crop. Crops from different regions of the brain contain different kinds of
cells. The network needs to detect this and generate new shape information accordingly.

52 3 EXPERIMENTS

Masked Segmentation Binary Painting

Figure 34: Two inference examples of the cGlow Shape Inpainting model. The crop di-
mensions are 256x256 and they were not seen during training. The masked region is
highlighted for legibility purposes.

Because the formation of feasible shapes for generated cells is a complex task, the visual
evaluation of results during and after training can provide a lot of information on the
network’s performance and learning process. This includes undesired features like the
occurrence of unwanted patterns, a lack of variety in cell shapes and sizes, as well as
cell contours ‘folding” in on themselves. This folding artifact is always present in the
initial phases of training and should disappear quickly. Higher settings of the order hy-
perparameter displayed problems with this folding behavior. Additionally, the size and
eccentricity statistics don’t full describe the shape of a segmented cell. The network could
perform well with respect to these statistics, but still generate unrealistic cell shapes.

Figure 34 shows some inference examples from the final cGlow model. Cell shapes over-
all look comparable in quality to the ground truth data. There are no obvious issues with
the individual cells. The second example shows the main flaw of the model, the inabil-
ity to condition its output properly to the cell shapes in the uncorrupted area. Here, the
masked segmentation image contains a lot of large, circular cell shapes, but the network
only generated smaller shapes. Usually, this is not a problem, it only becomes apparent
for select examples. Similarly, for crops with unique cell shapes, such as pyramid cells.

Early on in the learning process and for higher settings of the order parameter (> 4), the
samples show a folding artifact, where a single contour crosses over itself at least once.
This is visible in figure 35 and the main reason why the final model employs order 2.

3.6 Qualitative Evaluation of Binary Inpainting Models 53

Prediction Contour Outlines

Ground Truth

Masked Segmentation

& 0&0
C 03
(¢}
G o< v 9
0 3 (]

Figure 35: cGlow Shape Inpainting model inference example with folding artifact. The
right shows the contours of generated cells for order parameter 6. The small red contour
in the top right and the small green contour towards the bottom are folded in onto them-
selves, something that can’t happen in the cell segmentation image of a real crop.

3.6.3 Shape Inpainting with VAEAC

The visual sample quality was the main problem for the VAEAC model. As seen in
the quantitative evaluation segment, the mean-return setting resulted in a collapse of
the model, while the sample-return settings displayed better performance. The model
collapse of the mean-return setting is clearly visible when looking at inference examples,
as shown in figure 36. Notably, almost all generated cells in the corrupted area of the
Binary Painting are circular and of similar size.

The sample-return setting generates a wider variety of generated cells, but regularly pro-
duces odd generated cell shapes that are not comparable to anything in the ground truth
data. Especially long, stretched out shapes appear far too often. As a result, the cGlow
model clearly outperforms the VAEAC model regarding visual sample quality.

Crop
s

Masked Segmentation Binary Painting

Figure 36: VAEAC Shape Inpainting inference example with the mean-return setting.

While there is more variety to generated cell shapes than with the mean-return settings,
the generated cell shapes don’t match those of real segmented cells and often become thin

54 3 EXPERIMENTS
and stretched out. This is a very consistent shortcoming and clearly places this model

below the cGlow model with respect to visual quality.

Masked Segmentation Binary Painting

Figure 37: VAEAC Shape Inpainting inference example with the sample-return setting.

3.6.4 Binary Inpainting GAN

This was the naive approach to the Binary Inpainting stage. It approaches the task as a
regular inpainting task with a model similar to the regular II model. The experiments
here show that the GAN has severe problems with mode collapse on this task. The core
idea of doing inpainting on a segmentation image first, is to focus on specific statistics of
an image, such as the density and sizes of the segmented cells. The GAN however was
not able to focus on these statistics and showed no convergence behavior regarding them.
Figure 38 shows the same inference example during training from different epochs.

For better comparability, the figures below only show the corrupted region of the paint-
ing.

Binary Painting Binary Painting Binary Painting

(a) Epoch 90 (b) Epoch 93 (c) Epoch 98

Figure 38: The same inference example during training in different epochs. These are not
from the initial stages of training anymore and the model is cycling from large amounts
of segmented cells to fewer and back to a large amount.

3.7 Qualitative Evaluation of Image Inpainting Models 55

The GAN effectively cycles through different states, where the paintings contain some
amount of segmented cells, from very little to too many, and of varying sizes, from very
small to very large. While it was possible to get a ‘good” model with decent statistics
when stopping the training at exactly the right time, the model never displayed any form
of convergence behavior regarding these statistics.

Binary Painting Binary Painting Binary Painting

(a) Epoch 22 (b) Epoch 24 (c) Epoch 25

Figure 39: The same inference example during training in different epochs. In epoch 24,
the model didn’t generate any new cells, apart from the border region of the corrupted
area where the reconstruction loss provides feedback and cells that were cut off by the
mask are completed in the painting.

There also was a second form of mode collapse, where the generator wouldn’t generate
any cells at all, apart from the border regions of the mask that are affected by a recon-
struction loss. This occurred at seemingly random points during training and happened
in various model settings. This might happen only for a few epochs or the model can
stagnate in this state. Figure 39 shows an example of this behavior.

3.7 Qualitative Evaluation of Image Inpainting Models
3.7.1 Image Inpainting

The Image Inpainting model is only evaluated qualitatively, because of the existence of
the Binary Inpainting stage. All efforts towards quantitative performance in the Neural
Inpainting pipeline are focused on statistical properties of the crops with respect to cells.
These properties are fully captured in the cell segmentation images and the Binary In-
painting model should be used when these are of interest. That being said, one interest
here besides visual sample quality is the correct inclusion of the information provided by
the binary painting into the image painting.

56 3 EXPERIMENTS

Binary Painting

Figure 40: Two inference examples of the Image Inpainting model. These are examples
from the intact dataset that were not seen during training. The paintings display good
visual quality.

Paintings from the Image Inpainting model display overall good visual quality, with
mostly visually convincing examples. At best, the paintings are comparable or even in-
distinguishable to the ground truth at first glance. This applies especially to masks that
are relatively small compared to the crop dimension. Depending on the training run of
the model, some examples show undesirable visual artifacts. Although the final model is
able to produce good sample quality most of the time, it also suffers from severe artifact-
ing on specific examples.

Masked Crop Binary Painting

Figure 41: An inference example of the Image Inpainting model. It is from the intact
dataset and was not seen during training. The painting displays strong visual artifacting.

3.7 Qualitative Evaluation of Image Inpainting Models 57

When examples with visual flaws occur, it is likely that either the mask is relatively large
or the crop has an unusual texture that doesn’t appear frequently, if at all, during training.
The latter also causes problems when using the Neural Inpainting pipeline as a whole on
data from the artifact dataset. Section A.3 provides a larger number of random examples.

As mentioned, the correct inclusion of the information provided by the binary painting
into the image painting is also a desired quality of the Image Inpainting model here.
Figure 42 shows two comparisons between the binary painting and a cell segmentation
image of the image painting. The segmentation images only shows the masked regions.
As visible, some segmented cells can clearly be matched between the segmentations, but
there are plenty of differences, in shapes and count. During the early phases of training,
the image paintings include the binary paintings faithfully, but as the GAN improves its
textural features, it tends to ignore some of the input from the binary painting.

Binary Painting

Image Painting
\

Image Painting Segmentation

Figure 42: An inference examples of the Image Inpainting model comparing the binary
painting to a segmentation image of the image painting. The same masked area is cut out
in the binary painting and segmentation image of the image painting. This example was
not seen during training.

3.7.2 Image Inpainting on the Artifact Dataset

All evaluation runs so far have been conducted on the same dataset that was used for
training of the model, altough with data unseen during training. Evaluating the perfor-
mance of the Image Inpainting model on the artifact datasets indicates to what extend
the model is able to transfer its performance to unseen artifact data.

The results show that the models performs signifcantly worse on the artifact dataset,
especially the Image Inpainting model. While some samples still show decent quality,
see figure 43, these appear less frequent. More frequently appear examples with visual
artifacting, particularly on larger masks, as well as examples with a mismatch between
generated and original content. The generated region looks decent, but doesn't fit the rest
of the image. See figure 44 for an example of this. Section A.3 in the appendix contains
a large number of random examples for the Neural Inpainting pipeline as a whole. The
models clearly perform better when evaluated individually and when test and training
data come from the same dataset.

58 3 EXPERIMENTS

Masked Crop Binary Painting Segmentatio

Figure 43: Two inference examples of the Image Inpainting model from the artifact
dataset. They display good visual quality.

The BinaryInpainting model als has problems to properly adapt to a lot of examples
from the artifact dataset. In the first examples in figure 44, the generated cells are clearly
too large for the composition of the crop and the Image Inpainting model subsequently
generates large cells as well.

3.7 Qualitative Evaluation of Image Inpainting Models 59

Masked Crop

Binary Painting

Figure 44: Two inference examples of the Image Inpainting model from the artifact
dataset. They display lacking quality from both, the Image and Binary Inpainting mod-
els.

3.7.3 Image Inpainting without Binary Inpainting

The model here serves as a comparison for the full Image Inpainting model. As men-
tioned earlier, it was tuned and trained without the additional inputs from the Binary
Inpainting stage. It is expected to perform well in terms of sample quality, since the
information from the binary painting doesn’t help much with this.

Visually, the quality of the generated content is good for most examples. The paintings
are comparable in texture to the ground truth for the corrupted region. Especially for
medium and smaller masks, the corrupted and uncorrupted regions are indistinguish-
able at first glance. Similar to the Image Inpainting stage, visual imperfections can occur
when the mask is large relative to the crop dimension or when the crop has an unusual
texture that doesn’t appear often or at all during training. Figure 45 shows some good
examples and figure 46 displays problematic samples. A larger number of random ex-
amples can be found in section A.3.

Although this specific model doesn’t show artifacts like in figure 41 for the Image In-
painting model, it has similar problems with specific examples. The type of artifacts
differs between training runs, but they always appear in some form.

60 3 EXPERIMENTS

Segmentation of Painting

Figure 45: Two inference examples of the Image Inpainting model when trained without
binary paintings as auxiliary input. These are examples from the intact dataset that were
not seen during training, with good visual quality.

Crop Masked Segmentation of Painting

Painting

T

Figure 46: Two inference examples of the Image Inpainting model when trained without
binary paintings as auxiliary input. These are examples from the intact dataset that were
not seen during training, with visual artifacting and imperfections.

61

4 Discussion and Conclusion

4.1 Discussion

The purpose of this section is to interpret the experimental findings from section 3, relate
them to the research objective and give possible explanations for the shortcomings in
different areas. Each stage of the Neural Inpainting pipeline is briefly covered, including
comparisons to alternative approaches and then the model as a whole is discussed.

4.1.1 Artifact Localization

The Artifact Localization is the simplest stage of the pipeline. The overall performance
here meets the expectations, but individual examples are segmented very poorly, see
figure 24. This inconsistency is the main downfall here, however it is difficult to avoid
because the various kinds of artifacts are so different. Fully black or fully white ones are
easy to detect accurately, ones including some form of blur are more difficult to segment
correctly. The upside of this is that the difficult artifact are difficult because they still
contain a good amount of semantic and textural information. If the network doesn’t
detect a blurry region as an artifact, this region is likely to not distort segmented cell
statistics as much, if at all.

An increase in variety of artifact types should help to improve the model’s performance,
since 45 examples are not enough to cover a wide range of artifact scenarios. Different
factors influence the composition of a crop signifcantly, including the artifact type itself
as well as the brain of origin and the brain region.

4.1.2 Binary Inpainting

Image Inpainting without Binary Inpainting The motivation for the inclusion of the
Binary Inpainting stage in the reparation process is an improvement of the Image Inpaint-
ing model. We can compare the results from section 3.7 between the Image Inpainting
model with and without help from the Binary Inpainting stage, to see whether there is
a meaningful improvement. The main research objective is to generate paintings with
convincing visual quality and good statistical properties, such as segmented cell density
and sizes. The model here delivers visual sample quality on par, if not even a bit better
than that of the full model and displays statistical results only slightly worse than the
Binary Inpainting stage. The main drawback of the GAN here is its inability to optimize
for the different statistical properties separately. It is very difficult to optimize for sample
quality in the first place and there is no direct way to tune the model for specific features,
e.g. segmented cell count. This is exactly what the Binary Inpainting stage provides
by outsourcing this task to specialized models and excluding the GAN from this pro-
cess. Another issue with this model was inconsistency between runs, even with the same
training and architectural setup. Some runs performed very well with respect to the seg-
mented cell sizes, but failed to learn the segmented cell count distribution properly, vice
versa for other runs. The final model was simply the best when considering all aspects,
with the only clear shortcoming being a bias in the segmented cell size experiments.

62 4 DISCUSSION AND CONCLUSION

Density Inpainting The results here show that the network is able to learn the distribu-
tion of segmented cell locations within the ground truth data to a reasonable degree. The
performance in terms of raw generated cell count is satisfactory, with an average error
of 3.9%, relative to the total cell count in the ground truth crops, in 10000 examples. The
distribution of segmented cell counts was adequately reproduced by the model, the two
main shortcomings are a lack of variance and a slight bias towards a smaller amount of
generated cells than in the ground truth images. See figure 25 (b) for the best illustration
of these results. The reason for this bias might be the overall lower amount of proba-
bility mass in the masked KDE compared to the ground truth KDE. Because each seg-
mented cell has a global influence on the KDE image, the uncorrupted area in the ground
truth KDE contains significantly more probability mass than the uncorrupted area in the
masked KDE image. Another reason might be slight imbalances in the average amount
of segmented cells per crop between the training and test data, since these datasets were
rather small.

The design choice of zero padding for the Fourier matrices is not a good solution for
the variable sequence length problem, as it prevents the model from ever seeing unusu-
ally dense examples during training. This might play a role in the network’s adversity
towards producing high cell count samples, as seen in the boxplot in figure 25 (b).

The second goal of the Density Inpainting step, for the generated content to adhere to
high and low density regions within the crops, did not work as well as expected. The
KDE paintings never match the ground truth KDE images visually and the generated
area is always easy to spot by eye. This is probably another result of the above described
problem. Also, while the data representation in form of a KDE image does help with the
superposition problem, the qualitative evaluation shows that it is not completely elim-
inated. The KDE format merely offers a way of controlling the sharpness of the center
locations by literally blurring their position in the ground truth image. By using higher
values for the standard deviation of the Gaussian kernel when computing the KDE, the
superposition problem disappears, but the KDE’s become more uniform and lose infor-
mation as a result. Using smaller values leads to sharper feedback and more information
on the correct center locations, but the superposition problem interferes stronger in the
learning process.

While the results overall don’t quite meet the expected performance, they provide a suf-
ficient foundation for the Shape Inpainting and Image Inpainting to work properly. As
mentioned in section 3.6.1 already, without the split of the Binary Inpainting stage into a
two-step process, the Shape Inpainting via a Normalizing Flow model wouldn’t be pos-
sible in its current form. The NF model can’t sample the number of new cells, hence
this has to be done in a prior step. A re-design of this step is certainly possible and
might improve the results. This is also the only step in the Neural Inpainting pipeline
that doesn’t require a deep neural network, since the distribution of cell locations is only
2-dimensional.

Shape Inpainting The Shape Inpainting step is the most difficult step of the Neural
Inpainting pipeline. A network needs to very accurately learn a high dimensional distri-
bution of segmented cell shapes in a setup that exhibits a strong case of the superposition
problem. Additionally, it is a conditional task where the network needs to adhere to the

4.1 Discussion 63

information of already known segmented cell shapes from an input crop. The results
here are sufficient for the whole model pipeline to work, but leave a lot of room for im-
provement, as evident from the evaluation in section 3.6.2.

A big problem during the development of this step was an unexpected collapse behavior
for certain hyperparamter settings. When using low batch sizes (<16) together with low
learning rates (<1le-3), the generated segmented cell contours collapsed to very small
segmented cells, even down to single pixels. This corresponds to the values in the Fourier
matrices converging to 0. Interestingly, the settings of hyperparameters that result in such
a collapse are the ones that achieve the best results in terms of the NLL-loss. Since this
is unsupervised learning, good loss values don’t directly correspond to good inference
performance, still it is unclear why this happens and why these results achieve a low
NLL. The use of column-wise data normalization for the Fourier matrices resulted in a
slightly different collapse behavior to the mean segmented cell size instead of extremely
small sizes. For more information on the appearance of this behavior can be found in
section A.4.3 in the appendix.

Similar to the segmented cell count, the learned segmented cell size distribution shows
a bias towards smaller segmented cells and an overall lack of variance. The lack of vari-
ance is not a surprising result, especially not on this task with the superposition problem
present. A possible explanation for the bias is that the network’s inability to generate
larger segmented cells causes a bias in the average segmented cell size towards smaller
sizes. Another factor might be a difference in the overall segmented cell size distribution
between the test set and the training set. Since both were rather small, they don’t share
the exact same segmented cell size distributions.

The segmented cell eccentricity distribution was learned very accurately, especially com-
pared to the VAEAC results. As seen in the qualitative evaluation however, this doesn’t
necessarily result in good generated cell shapes.

In its current form, the Shape Inpainting model is not conditioned on any cell locations,
not from the known segmented cells, nor from the ones generated in the Density Inpaint-
ing step. While these are used for the placement of the cells in the binary painting and
they determine the number of cells that the Shape Inpainting model generates, it does not
receive them as input. The direct implication here is that relations between segmented
cells and their shapes, based on their location, can’t be modeled in the Shape Inpainting
step. Instead, an overall distribution of feasible cell shapes based on the shapes of all
real, segmented cells from the input is learned and sampled from. How to condition the
model correctly on the location information is unclear. They were treated separately from
the Fourier matrix, because simply concatenating them to the front of each row didn’t im-
prove the results. This issue is related to the problem, that the conditioning network of
the cGlow model is a convolutional one. A redesign of this conditioning network, with
an architecture that employs a more fitting inductive bias for Fourier matrices, is certainly
an interesting proposition, but was outside of the scope of this work. The inclusion of cell
locations in this process, separate from the shape coefficients, should play a significant
role in the architectural design here.

In comparison to the cGlow model, the VAEAC model performed significantly worse.
While the mean-return setting is not usable at all due to its complete lack of variance,

64 4 DISCUSSION AND CONCLUSION

the visual sample quality with the sample-return setting doesn’t hold up to the real seg-
mented cell shapes. The model is simply not able to approximate the segmented cell
shape distribution well enough. A big problem here is that the decoder parameterizes
a multivariate Gaussian distribution with diagonal covariance matrix. When sampling
from this, the parameters are sampled independent of each other, resulting in odd gener-
ated cell shapes, even if the overall variance is accurate. The cGlow model doesn’t have
this independence assumption and subsequently produces more accurate samples.

Comparison to Binary Inpainting GAN A GAN proved to be inherently the wrong
approach to the Binary Inpainting stage. It showed severe problems with mode collapse
in the form of cycling between states containing different amounts of sizes of cells, both
from too little to too much, and by randomly outputting black areas that don’t contain
any cells. The cycling between solutions appears to be a result of the GANSs inability to
deal with the superposition problem on this dataset. The black output problem appeared
to be a reasonable solution to the discriminator, since black areas are often part of the real
data. It is difficult for the model to distinguish at what size these areas become unlikely.
While the cycling is an inherent problem of the GAN approach, the black output problem
might be fixed by using a different data format than 2d-segmentation images.

The main reason why a GAN is inherently the wrong approach here is its feature selec-
tion. Since the goal of the Binary Inpainting task is to get specific features (like density
and sizes of segmented cells) right, the model and objective should reflect this. While
a GAN does tend to pick out specific features from the input data, it’s not always the
desired features and it constantly changes its focus, hence the mode collapse problem.
Trying to remedy this with the unrolled GAN [25] approach or a Discriminator pool re-
sulted in much slower learning and amplified the black output problem since this seems
to be a solution that always works for the Discriminator.

4.1.3 Image Inpainting

The Image Inpainting stage is solely responsible for the visual quality of the final image
painting, which was one of the two criteria of the research objective. The modular U-Net,
described in section 2.1, was developed primarily for this task, as a mixture of tricks and
features that were picked to fit the task and data, with everything based on the original
U-Net for biomedical image segmentation [30]. Besides good visual quality, the second
goal here was the faithful inclusion of the information provided in the binary painting.

The final model is able to produce convincing visual sample quality most of the time,
with the main shortcoming being strong artifacting on specific examples. This problem is
expected to improve with a larger crop dimension, specifically a larger ratio of unmasked
to masked pixels, because such improvements were visible during the development. Be-
cause the Shape Inpainting model restricts the crop dimension to be constant, the Image
Inpainting model had to be tuned and improved in other ways though. A tuning and re-
training of the whole pipeline on more data and with a larger crop dimension is certainly
desirable.

The second goal, the faithful inclusion of information from the binary painting, was not

4.1 Discussion 65

achieved by any variant of the Image Inpainting model during development. The dis-
criminator also receives the binary painting and can use this information to discriminate
the previously corrupted area if the generator doesn’t include it correctly. However, the
generator tends to ignore the binary painting in the later stages of training and focus on
better textural quality instead. The implication of this is that the image painting can’t
be used to extract accurate cell statistics, although they are likely still better than leaving
artifacts in. Instead, cell statistics should be taken directly from the binary painting, as
these are much more comparable to the ground truth data used for the experiments. As
the only effort to enforce the correct inclusion of the binary painting is to also give it to
the discriminator, this aspect can certainly be improved by incorporating additional mea-
sures here, e.g. a loss term similar to the weighted reconstruction loss, but for the binary
painting. This remains for future work.

Notably, the addition of the binary painting to the inputs for the Image Inpainting stage
lead to more instable training behavior and worse results. With the same training and
model setup, the Image Inpainting model without additional inputs displayed more sta-
ble training. Again, a better way of incorporating the binary painting into the learning
process here might alleviate this problem.

Lastly, the inconsistency between training runs of the same model and training settings
is important to mention here. Not only can small changes in hyperparameter or architec-
tural setup have strong effects on the results, simply redoing a training run can result in
a model with different results. This includes different kinds and frequency of artifacting
problems and different overall visual quality. Part of the reason for this is the inconsis-
tency within a training run of a GAN, they often have their best results during a training
run and not necessarily at the end of it. Finally, the two best models show different trade-
offs between visual quality and artifacting problems. The model from the experiments
in section 3.7 has overall good visual quality, but strong artifacting problems, when arti-
facting occurs. The other model has overall mediocre visual quality, but much less severe
artifacting problems. The only difference between the two is that the former has a larger
number of learnable parameters, because its width unit parameter is larger. Despite its
artifacting problems though, the first model demonstrates that good visual quality is
possible with this architecture and training setup and the artifacting problem is left to be
solved in future work, perhaps with a higher crop dimension.

4.1.4 Neural Inpainting

A very important distinction in the evaluation of this method is the dataset used. There
is no choice for the Artifact Localization, but the other stages can be evaluated on the
dataset of intact scans or on the dataset of scans with real artifacts. For the evaluation
in section 3, the test sets were always from the same dataset as the training sets, so that
ground truth data could be used to evaluate the results. In theory, going from the intact
dataset to the artifact dataset should not make a difference for the Binary and Image In-
painting stages, since both receive incomplete crops with uncorrupted areas and a mask.
In practice however, this proves to be a challenge, especially for the Image Inpainting
stage. When evaluating the complete Neural Inpainting pipeline on the artifact dataset,
many paintings display the same characteristic: Even though the generated part looks

66 4 DISCUSSION AND CONCLUSION

realistic sometimes, it clearly doesn't fit the original part of the image.

The problem here is that the uncorrupted parts in both datasets are not alike, because the
scans in the artifact dataset were specifically picked for their artifacts and they come from
different brains and brain regions, while the scans in the intact dataset were picked for
their even and large amount of cortical area and come from similar regions of the same
brain. The visual composition of a scan is determined by multiple factors, including
which brain it is from, the region within the brain or the cutting angle relative to the
surface. All of these and more aspects are not properly balanced within and between
the two datasets, resulting in problems for the Image Inpainting network on the artifact
dataset. Especially when it comes to the textural component of the images, the generated
content of the Image Inpainting model often doesn’t fit into the image at all.

An easy solution here would be to also use the artifact dataset for training of the Image
Inpainting model. This is not directly possible however, because the model employs a re-
construction loss around the edges of the corrupted areas. Unfortunately, data augmen-
tation doesn’t solve this problem either, because it doesn’t affect the textural information
in the crops. A missed opportunity for potentially useful data agumentation is some form
of color jitter. This could help to transfer the performance to different brains, which have
different overall brightness and contrast, due to differences in the staining and scanning
process. The best solution is still the inclusion of much more data to balance out the
contents of the two datasets.

While the different stages in the pipeline perform quite well individually, this problem
severely limits the model’s usability as an inpainting model in its current state. The re-
sults when using the Neural Inpainting pipeline as a whole are unsatisfactory and do not
meet the goal of visually convincing sample quality. The Binary Inpainting stage, and
with it the statistical part of the model, should be less affected by this. Because this can’t
be quantitatively evaluated however, there is no guarantee for this.

4.2 Conclusion

This master thesis project aimed to develop a novel approach to the task of repairing arti-
facts in histological brain sections, which has previously been done manually or with
methods that estimate simple features, like cell locations, based on information from
neighboring sections [7]. The results demonstrate that it is possible to learn various prop-
erties of crops in histological brain scans and to repair damaged areas of crops with deep
generative models. By no means does it exhaust the possibilities to achieve this, nor does
it provide results that can’t be improved upon. Cell statistics, comparable to statistics
from ground truth data when evaluated on artificially masked examples, can be extracted
from the Binary Inpainting stage, while the Image Inpainting model is able to generate
visually convining examples in the right circumstances.

The crucial steps in making the model pipeline work are the addition of the Binary In-
painting stage and the efficient parameterization of cell countours via the Fourier series.
The Binary Inpainting stage performs a separate reparation on a cell segmentation im-
age and generates information on the locations and shapes for new cells. This allows for
the design and optimization of the reparation process specific to statistical correctness

4.2 Conclusion 67

regarding cell bodies in the scans. With a single Inpainting model, this would be much
harder to do. The use of the Fourier format results in a data representation of cell segmen-
tation images that is much smaller than 2d-images. A single image can be described in a
matrix of Fourier coefficients, with each row parameterizing the contour of a segmented
cell. This enabled the use of Normalizing Flow models to infer the shapes of new cells
from the segmented cells in the uncorrupted area.

While each individual model in the Neural Inpainting pipeline performs well on their
respective test data, the model as a whole produces unsatisfactory results when applied
to test images with real artifacts. This is due to the limited size of the datasets and their
different compositions. Especially the Image Inpainting model is not able to transfer
its performance to examples that differ too much from its training set. A tuning and
re-training with more data and a larger crop dimension should alleviate some of the
problems of the Image Inpainting model. In its current state, the results from this model
on unseen artifact data are not usable.

The development of this model also showed various opportunities for further improve-
ments. These include a better way of incorporating the binary painting into the im-
age painting, a better solution for the variable length of the Fourier matrices than zero
padding, the use of a non-convolutional conditioning network in the cGlow model and
better conditioning of the Shape Inpainting model on information about the locations of
segmented and new cells.

Apart from improvements of the existing Neural Inpainting framework, the idea of con-
ditional models for histological inpainting can be extended to focus on more features than
the cell bodies. Leaving the first and last stages as is, a possible expansion of this pipeline
is be the inclusion of additional models that specialize on learning specific properties of
the brain scans. These could then be provided as additional conditional inputs to the last
step and improve the realism and statistical reliability of the final inpainting result.

68 A APPENDIX

A Appendix

A.1 Model and Training Details
This section contains model and training details for all models featured in this thesis. The

tirst subsection provides them for the models in the Neural Inpainting pipeline, the sec-
ond subsection for the additional models that were featured in the experiments section.

A.11 Neural Inpainting Models

No. of Parameters
Artifact Localization 471,809
Density Inpainting 229,113
Shape Inpainting 37,787,956
Image Inpainting G 7,182,945
Image Inpainting D 3,369,777

Below is a table that describes the different U-Net variants used in this thesis. Denote
model width, skip connections, normalization, activation, gated convolutions and dilated
convolutions in the bottleneck as width, skip, norm, act, gated and dilated respectively.

Width | Skip Norm Act Gated | Dilated
Artifact Localization 16 v Batch ReLU X X
Density Inpainting 8 v Batch ReLU v X
Image Inpainting G 32 v Batch ReLU v v
Image Inpainting D 32 v | Batch, Spectral | LeakyReLU v X

The layer configuration for all variants of the modular U-Net is as follows. Denote kernel
size, dilation, stride and number of output channels as K, D, S and C respectively. For
readability, the width unit was set to 16 here. A different width unit, e.g. 32, would result
in double the number of channels for every convolutional layer.

Modular U-Net Encoder: K351C16 - K351C16 - K252C16 - K351C32 - K351C32 - K252C32
- K351C64 - K351C64 - K252C64 - K351C128 - K351C128

Bottleneck: K3D251C128 - K3D451C128 - K3D851C128

Modular U-Net Decoder: NN-Upsample - K1S0C64 - K351C64 - K351C64 - NN-
Upsample - K1S0C32 - K351C32 - K351C32 - NN-Upsample - K150C16 - K351C16 -
K351C16 - K1S0C1

Every convolutional layer with kernel size 3 is followed by a normalization layer and
an activation layer. If spectral normalization is used, the batch normalization layer is
omitted. Depending on the task, a sigmoid or tanh activation is used after the last layer,
e.g. tanh for the II generator and sigmoid for the II discriminator.

The table below describes the training setups for the four networks of the Neural Inpaint-
ing pipeline. Denote batch size, learning rate, PyTorch’s Adam weight decay parameter
and learning rate decay by Bs, Lr, Wd, LrDc respectively.

A.1 Model and Training Details 69

Epochs | Bs | Lr | Wd | LrDc Loss Optimizer
Artifact Localization 300 16 | 4e-4 | 5e-3 | V BCELoss Adam
Density Inpainting 100 |64 | 23| 0 v L1-Loss Adam
Shape Inpainting 200 |64 |5-3| O v NLL Adam
Image Inpainting G 200 32 |4e4| O X | MU-Net GAN ? Adam
Image Inpainting D 200 32 | 1le4| O X MU-Net GAN Adam

The Image Inpainting models were the only ones to not use the default beta values in the
Adam optimizer. They employed 3, = 0.5.

Learning rate schedules:

Artifact Localization: Step decay with factor 0.9 every 10 epochs
Density Inpainting: Multi step decay with factor 0.5 in epochs 5, 10, 15 and 25
Shape Inpainting: Step decay with factor 0.9 every 10 epochs

Here are the additional hyperparameters needed for the cGlow configuration.

The flow has 3 levels with depth 16 each (L=3, K=16). The conditioning network has
128 channels in the convolutional part and 64 parameters in the linear hidden layer. The
convolutional network in the affine coupling layer has 256 hidden channels.

A.1.2 Additional Models

Binary Inpainting GAN The GAN model employed for the Binary Inpainting stage
was very similar to the GAN model from the Image Inpainting stage, in that both models
are a variation of the modular U-Net from section 2.1. The generator contained 7.183.521
and the discriminator 118.049 learnable parameters. Below is a description of the archi-
tectural and hyperparameter setup.

Width | Skip | Norm Act Gated | Dilated
Binary Inpainting GAN G 32 v Batch ReLU v v
Binary Inpainting GAN D 8 v | Spectral | LeakyReLU X X
Epochs | Bs | Lr | Wd | LrDc Loss Optimizer
BIGANG | 100 |16 |2-4| O X | MU-Net GAN | Adam
BIGAND | 100 |16 |1le4| O X | MU-Net GAN | Adam

VAEAC The VAEAC model used in this thesis is a slightly modified version of the
model from the paper by [13]. Because the Fourier format has a smaller feature dimension
than regular images, the last downsampling step including 4 res-blocks, average pooling
and a 1x1 convolution, was omitted in the proposal and prior network. Accordingly, the
corresponding first upsampling step in the generative network was omitted as well. The
optimizer was kept and an alternative return option was added to the sampler, that ap-
plies the ".sample()” function to the PyTorch distribution object which is parameterized
by the decoder’s output. The implementation of the forward pass and the objective was
modified to take Fourier matrices as input and target, as well as accommodate masks for
the masked entries and padding to the maximum number of cells per crop.

Zsee section 2.1 for the U-Net GAN loss and section 2.6 for the weighted reconstruction loss.

70 A APPENDIX

The final model had 1.404.882 learnable parameters and the following hyperparameter
setup.

Epochs | Bs | Lr | Wd | LrDc | Loss | Optimizer
VAEAC | 100 |32 |4e4| O X | VLB Adam

Below are model and training details for the models that are features in the experiments
section, but are not part of the Neural Inpainting pipeline.

Image Inpainting without Binary Inpainting To provide a comparison for the final
Image Inpainting model, one without the additional inputs from the Binary Inpainting
stage was tuned and trained separately. Similar to the Image Inpainting model, it is
a variation of the modular U-Net from section 2.1. It features the same architectural
setup, except for hyperparameter choices, like the width unit. The generator contained
1.798.673 and the discriminator 911.825 learnable parameters. Below is a description of
the architectural and hyperparameter setup.

Width | Skip Norm Act Gated | Dilated
ITw/oBIGAN G 16 v Batch ReLU v v
Iw/oBIGAN D 16 v | Batch, Spectral | LeakyReLU v X
Epochs | Bs | Lr | Wd | LrDc Loss Optimizer
BIGANG | 200 16 | 1le-4 | O X | MU-Net GAN® Adam
BIGAND | 200 16 | le-4 | 0 X MU-Net GAN Adam

Like the regular Image Inpainting model, 3; = 0.5 was used for both Adam optimizers.

A.2 Representation of Cell Contours via Fourier Format

The following is not a proof of the existence or the convergence of the Fourier series but
an illustration of why the computation of the Fourier coefficients is an elegant way to
parameterize a shape. We will now derive the formulas for the Fourier coefficients from
section 2.5.1.

Consider the function zx(t), everything works analogously for yx(t) with f,(¢). Denote
f(t) == fz(t) for simplicity. Expressing the equations with the help of complex numbers
makes the math a lot cleaner and easier to understand at the cost of a little work up front.
Recall Euler’s formula and it’s direct implications:

€ = cos(z) + isin(z) (Euler’s formula)

eiac +e—ia}
cos(x) = ——
) =
] eiac _ e—ia:
S =
in(z) 57

Let’s start with the Fourier series in exponential form:

N

I‘N(t): Z cn€n27rit

n=—N

A.2 Representation of Cell Contours via Fourier Format 71

We assume zy(t) = f(t), i.e. the existence of the exponential Fourier series for some
{en})__y and a large enough N (can be infinity). Note that a complex exponential of the
form e"?™ corresponds to a unit circle and changing ¢ corresponds to a rotation around
this circle with frequency 27mn. This means that the exponential Fourier series above
represents a contour as a sum of circles with different radii c,,. As we increase ¢ from 0 to
1, the circles turn at different frequencies 27n and "draw’ the contour f(t).

What is left now is to determine the coefficients {c, }_ .. All we have to do is to multi-
ply the function f(t) with e~ and integrate over ¢ from 0 to 1:

1 . 1) 1 .
/ f(t)eim?ﬂltdt) / TN (t)efm2mtdt
0 0

1 N N 1
(i) / Z cn en27rite—m2m't dt (i) Z cn / e(n—m) Qﬂitdt
0 p=—nN n=—N 0

1 1
@0+...+cm/ eQW(m_m)itdt—i—...—i—O@/ cmdt = ¢,
0 0

There are a few things happening here:

(1) We write f(t) as xn(t), which is a sum of complex exponentials with different fre-
quencies n27 and different weights c,,.

—m2mit

(2) Instead of multiplying = x(t) with e
series individually.

, we can multiply each summand of the

(3) This multiplication corresponds to a change in frequency of each complex expo-
nential. The integral on the left side is effectively an average over the contour. By
swapping summation and integration, we instead average over the circles first and
then sum the results.

(4) For all circles with non-zero frequency 2(n — m)n the integral becomes 0, because
the average over a circle is its center, 0.

(5) What is left is the only exponential with 0 frequency: cj,.

This YouTube video by [34] provides a geometric and very intuitive explanation of the
above derivation. Now, armed with the formula for ¢,,:

1
cn:/ f(t)efmm'tdt
0

we can derive the formulas for a,, b, and the trigonometric Fourier series.
1
Cn = / ft)e ™2t
0
1
= / f(t)(cos(—n27t) + isin(—n2mt))dt
0

1 1
_ / F(t) cos(n2rt)dt — i / F(8) sin(n2mt)dt
0 0

72 A APPENDIX

with
1
ap, = 2/ fz(t) cos(n2mt)dt
0
1
by = 2 / £,(£) sin(n2rt)dt
0
Analogously
c /1 f(t) n27ritdt afn + bﬂl
o S22
Note that
1 a0
co = / f(t)dt =
0 2
And finally
N
.CI?N(t) _ Z Cn€n27rit
n=—N

b - b .
<a2n — 2”1) en?mit 4 (a; + 2”@) e_”2”1t>
An bl n2mit an bj —n2mit
(> " 2i>e * (2 2)°
en27rit + e—n?ﬂit n2mit _ ,—n2mit
2 21

N
=— 4+ Z (an cos(n2rt) + by, sin(n2mt))

All of the above can be done for zy(t) and yn(t) separately to parameterize a 2-
dimensional contour with 4NV Fourier coefficients.

A.3 Inference Examples

This section contains large, random collections of inference examples for the three stages
and the model pipeline as a whole. They all have crop dimension 256 and come from
cutouts that were not used during training. The Artefact Localization and Neural In-
painting examples come from the artifact dataset, the Binary and Image Inpainting ex-
amples come from the intact dataset. All of them were generated randomly without a
review of the results.

(%)

7

A.3 Inference Examples

A.3.1 Artifact Localization

Figure 47: 44 inference examples for the Artifact Localization model from the artifact

dataset, with crop dimension 256. These examples were not seen during training.

74 A APPENDIX

A.3.2 Binary Inpainting

Figure 48: 44 inference examples for the Binary Inpainting model from the intact dataset,
with crop dimension 256. These examples were not seen during training.

A.3 Inference Examples 75

A.3.3 Image Inpainting

Figure 49: 44 inference examples for the Image Inpainting model from the intact dataset,
with crop dimension 256. These examples were not seen during training.

A APPENDIX

76

Neural Inpainting

A34

4.,,Lv .. k_. . |
oie Vikies
I E

.,__.».
i ik

o1

Figure 50: 40 inference examples for the complete Neural Inpainting model from the

with crop dimension 256. These examples were not seen during training

7

artifact dataset
by any model.

A.4 Hyperparameter Tuning

A.4 Hyperparameter Tuning

The following descriptions apply to all graphics in this section

77

. A slightly transparent

solid line depicts training loss, circles depict test loss and a dashed line depicts an expo-

nential moving average of the test loss. The exception to this are

graphics where training

or test loss are explicitly specified, e.g. in the title. An epoch corresponds to 1000 random

crops and masks from one of the two datasets.

A.4.1 Artifact Localization

All training runs of the Artifact Localization model employed exponential learning rate

decay where the learning is multiplied by 0.9 every 10 epochs.

Batch Size 16
0.25

Batch Size 32

¥ 0.25 T
\
{ Y \
- 1
N Vo
0204 . 0.20 Loy
' M g
bs'?‘“(-‘ﬂ (§ W [N W "
B ¥ 3 ool Y
0 0.154 T o | @ 0.151 ! i T A N Y
2 AR A o R TR
TIRCLI) | f (hi B POSa bR ST SRS
o] LN 10, 570X " Q B TSR SR R S Yt G0 g
@ 0.10 ki \'ﬂ‘\:‘?@‘['ﬂ;1:-3“:'1;-'»4'“’\' SN @ 0.101 TG BAGTS, To a
R o T S I N Lag TP
0059 ___ |r1e-03 0057 ——- Ir1e-03
Ir 2e-04 Ir 2e-04
=== Ir4e-04 —=- Ir4e-04
0.00 -— v . r r T T T T 0.00 -— v T r -
0 25 50 75 100 125 150 175 200 0 50 100 150 200
Epochs Epochs
0.25 T
B === Ir2e-04, bs 16
ks Ir 1e-03, bs 32
\
0.20 3
\\ N
e 8
AN
M
v 015 V.
o} . RN
Q - Bt 1SS] Yo,
@ 0.10 84/ Sl R L8 TR, WR-H08 40, =G 5
0.05 4
0.00 T - : r :
0 50 100 150 200
Epochs

Figure 51: Artifact Localization learning rates and batch sizes

comparison. Top Left:

A comparison of three learning rates with batch size 16. Top Right: A comparison of
three learning rates with batch size 32. Bottom: A comparison of the best combinations
from the above graphics. For all runs the width unit was 64 and the Adam weight decay

parameter 5e-3.

78

0.25

Test Loss

0.20 A

o
o
a

BCE Loss

o
-
=)

0.05 A

=== wd 1.0e-02

~=- wd 5.0e-03

—=-- wd 1.0e-03

—=- wd 1.0e-04

—=-- wd 1.0e-05

—-=- wd 1.0e-06
O };\’“ Xy
1b /’ :;I\‘(UJM /wwr

(»l

..Av’

*’5«‘“ ,\ S P /

0.00

25 50 75 100
Epochs

150 175 200

BCE Loss

0.25 7

0.20 A

=3
e
o

=3
Y
=)

0.05 A

0.00

A APPENDIX

Train Loss

0 25 50 75 100 125 150 175 200
Epochs

Figure 52: Artifact Localization weight decay comparison. Weight decay is adjusted via
the weight decay parameter of PyTorch’s Adam implementation. The slightly transpar-
ent circles (left) and plots (right) depict raw test and training data respectively. The solid
lines in both graphics are exponential moving averages of the respective raw results. For

all runs the batch size was 16, the width unit 64 and the learning rate 4e-4.

Test Loss Train Loss
0.200 T 0.200
‘p“\‘\ --- wul6
JHINY ——
01751 0, wu 32 0.175 1
W -=- wu 64
PN --- wul28
0.150 \ \Q(0.150
‘-. \ Lo a
IR YA Ou g
01251 T Do Laedh 0.125 1
9 AN onGs, : @
o) vw»\ Ry \ ot o
3 % & Ehas SEVEL, ‘,« /‘,_ X3 J 3
0.100 . m~ DB e ,v. e 0.100 -
5 ’ AR w‘ Sy ﬁ g g
m s3]
0.075 - % 0.075
0.050 0.050
0.025 0.025 -
0.000 T !] . , : T T 0.000 -— : ! ! : . :
25 50 75 100 125 150 175 200 0 25 50 75 100 125 150
Epochs Epochs

Figure 53: Artifact Localization width unit comparison. The slightly transparent circles
(left) and plots (right) depict raw test and training data respectively. The solid lines in
both graphics are exponential moving averages of the respective raw results. For all
runs, the batch size was 16, the weight decay parameter 5e-3 and the learning rate 4e-4.

A.4.2 Density Inpainting

All runs in this section employ a learning rate scheduling where the learning rate is mul-
tiplied by 0.5 after the epochs 5, 10, 15 and 25. The Adam weight decay parameter is 0
and betas 0.9 and 0.999.

A.4 Hyperparameter Tuning

Batch Size 64

1\ == Ir1e-03
\
0.12 e Ir 2e-03
\\e\ —-- Ir 4e-03
\ \
A} \
\\ \
0.11 ARA
1
(AN
I \\ N
S M
J \
o, 0.10 M o3 i,
e SN Y 45 b
8 L R T TGN I
e \v",:\,,\ FLIPE TN
M
0.09
0.08
0 10 20 30 40 50

Epochs

BCE Loss

0.12

0.11+

0.10

0.09 1

0.08 1

Batch Size 128
v
[—-- Ir 1e-03
v Ir 2¢-03
A% —=- Ir4e-03
A
‘\
\\
‘\
\\
\\
N
\\\"
\\ \\\
\ -
AN AN AN
by Al /:(\,—-
X ,‘\\ YRR RN
/ - NI,
3
0 10 20 30 40 50
Epochs

Figure 54: Density Inpainting batch sizes and learning rates comparison. Left: A com-
parison of three learning rates with batch size 64. Right: A comparison of three learning
rates with batch size 128. The width unit was 8 for all runs.

~
\\ -=- Single Masking
0.124 \ Double Masking
\\
\
\
\
\
0.114 e
%
\
N
(%] S,
I 0
o AN
~ 0.10 N
w "N
2 s P Vsfla o AW 2 gl
Y PR gL = AAT \ N WF RO IV ~o7 Vs
NS F i FLALMAY e+ 44l
0.09 ~ S PN TR
0.08 1
0 10 20 30 40 50

Epochs

Figure 55: Density Inpainting double vs single masking comparison. Single masking
means that the input crop during training is masked before the KDE is applied, which
simulates the inference scenario where this information is missing in the first place. Dou-
ble masking means that the masked KDE image is masked a second time right before it
is fed to the network during training. For both runs the batch size was 64, the learning

rate 2e-3 and the width unit 8.

80

0.12

0.11 1

BCE Loss

0.09

A APPENDIX

=== Lr Decay
\ = No Lr Decay
‘\
\
\
\
N
\n
-
\
\
S
iaiatN
\
{ o~
N
VoA,
AN AN vy Pitagimiy 2 8 VL, SO i o
P W (P Ay o R AR A VA TN ¢
10 20 30 40 50
Epochs

Figure 56: Density Inpainting learning rate decay comparison. Here, the regular learning

rate scheduling was switched off. For both runs the batch size was 64, the initial learning
rate 2e-3 and the width unit 8.

Width Unit 8
1 —=- Ir5e-04
0.12 % Ir 1e-03
‘t\ ~=- Ir2e-03
\“‘
0.11 Ay
N
S0
@ N
4 i\
] i AN
w 010 I & Ee
Q Sk f s
WA S N L i b N
S g \:;,;:x‘);’::{', \
0.09 TEIRT N Ty At
0.08
10 20 30 40 50
Epochs
Width Unit 32
=== Ir5e-04
0.12 1 - Ir 1e-03
—=- Ir2e-03
0.11
"
n
(=]
— 0.10
w
Q
s3]
0.09
0.08

10

20

30
Epochs

40

50

Width Unit 16

—=-- Ir5e-04
0.12 LR - Ir1e-03
Y & —=- Ir 2e-03
\ S
1 Y
0.114 AU
.
2 Mo WS
S i R B
J f .
o 0.10 1) oY, X
¥ NS
o \i i N v
W] H TR R A s A | Pl
009 1 2 *W‘“{"7’<‘:\:‘_T:;'~":“\‘(:f7ﬁ:
0.08
10 20 30 40 50
Epochs
Best Combinations
831
“‘\ —=- wu8g,Ir2e-03
0.12 S wu 16, Ir 2e-03
AR -=- wu 32, Ir 1e-03
A ‘\
0.114 Wiy
I
" AR
I e
3 “\\/s\
o 0.10 N \\\:\
A 1y N e A o
0.091 Nt GuEa RS b A ey R
R e MO Y
AL
0.08
10 20 30 40 50
Epochs

Figure 57: Density Inpainting width units and learning rates comparison. Different width
units are compared with a range of learning rates. In the last graphic their best combina-
tions are compared. Because the differences are so minor, but an increase in model width

by a factor of 2 or 4, the final model uses width unit 8.

A.4 Hyperparameter Tuning 81

A.4.3 Shape Inpainting

For more information on the order parameter, see section 2.5.1. For all runs in this section
the Adam weight decay parameter is 0 and the betas are 0.9 and 0.999. The maximum
amount of cells for a crop is 192.

Training Collapse The cGlow model exerted a convergence behavior similar to mode
collapse in GANs. When using low learning rates (< 1e-3), especially in combination with
low batch sizes (< 16), all generated cells became small dots, even down to single pixels.
When this happens, all entries of the Fourier matrix for the new cells are very small (<
le-2), much smaller than they should be. The use of column-wise data normalization for
the Fourier matrices resulted in a classical collapse behavior to the mean cell size instead
of extremely small cells. This collapse happens very early in training, right after the
initial steep slope of the loss curve. Surprisingly, these were the hyperparameter settings
that achieved the lowest NLL. When increasing the learning rate to a certain point the
collapse behavior became more inconsistent. Results of experimenting with learning rate
decay suggested the learning rate during the initial phase of training is important. When
employing learning rate decay and an initially high learning rate, it is possible to decay
the learning rate to previously unstable values without causing the collapse. It is unclear
under what specific circumstances the collapse happens though. Adjusting the weight
decay parameter of PyTorch’s Adam implementation doesn’t help here. Also, less severe
cases of the collapse also happend with larger learning rates and batch sizes in later stages
of the training, seemingly at random. Overall, larger batch sizes and higher learning rates
seem to have a stabilizing effect in this regard.

This phenomenon unfortunately makes straight forward hyperparameter tuning impos-
sible, because good results in terms of NLL and good model performance are not equiv-
alent. Without further knowledge on what exactly is going on here, visual inspection of
the results during the training process is needed to find a good set of hyperparemeters.

Order 2

Below are graphics of hyperparameter tuning without any form of learning rate decay.
They illustrate the result in terms of NLL given different hyperparameter settings. Espe-
cially the batch size shows some unconventional behavior with respect to convergence
speed.

82

10 1 ¥ \\
'. \ \
| \ N
| \ \
84 \
'. 1 \
‘\ Ay
\
i \
6 A \
1 \
- A \
pu} \ \
b= ! \
44 \ \\
\ \
\ \\
AY
\ SN
\ NS
21 -—- bss \\ W
~~- bs 16 So. | REoR
=== bs32| TTTWGRgessh . . - b oy
04 ---bsea TTEENNINASAewsae ey
0 10 20 30 40 50
Epochs

Figure 58: Shape Inpainting batch size comparison with different y-axis scaling. Left:

NLL

A APPENDIX

2.0
1
1
1
1.5 n
\
A
i
1.0)
h
A
T
051 S
3,
B, "
0.0 4 X \m < 1
N, iy \
LIRY I
—0.5 SRR | &
e ERAL N,
4 LN
-1.0 Ve,
. b
R IIRVSN
S5
-151 .- psg ol Y
bs 16
-2.01— T T T) .
0 20 40 60 80 100

120 140
Epochs

A comparison of 4 batch sizes. Right: A comparison of the two best batch sizes with a
longer training time of 10 epochs. While batch size 16 offeres a faster epoch time of 60s

runs employ a learning rate of 5e-4.

(vs 90s for batch size 8), batch size 8 stays ahead even in longer training scenarios. All

10

NLL

10

Ir 1le-04
Ir 2e-04
Ir 5e-04
Ir 1e-03
Ir 2e-03
Ir 3e-03

Figure 59: Shape Inpainting learning rate comparison. Left: A comparison of 6 different

2‘0
Epochs

30

2.0 T
1
1
1.5 LY
\
S
\
1.0 N
\
N
N
N
0.5 N
Bl
WA
o 0N
=2 0.0 " 2
=4 » g 1.
A, S s
-0.5 By Whde
Bebii i N ,\\
AR oLa
~104
157 Ir 2e-04
=== Ir 5e-04
—2.01— T - - - :
0 20 40 60 80 100

Epochs

learning rates with different y-axis scaling. Right: A comparison of the two best learning

rates. The slower learning rate of 2e-4 is able to catch up and is thus the preferred choice
for longer training runs. All runs employ batch size 16.

A.5 Pylorch and Hardware Setup

Order 4
10 1 1 \\ 20 1
|‘ \ 'y ‘1
\ \ \ 151 |
84 1 1 ‘\ 1
1 \‘ \ 1
1 \ i \
| \ Ry 1.0 W
1 \ Y (Y
\ ‘\ \\ \\ i3
6 ‘1 \ 3 0.5 \ 0 R
N \ \ - N 3
= I‘ ‘\ = ”\ ! \\
=} y \ 2 00 s | T I
= \ \ = S W R iy
41 \ \ Wig J R2 W
\ \ -05 Baag| | @D
\ \ el | &
\ \ T
\ . 104 ol
27 --- bs8 N, ~ R ' RN
\\ hi. »~
bs 16 -, T e
--- bs32| Rd WERgn P “1579 ——- bs8
oq|-—- bs64| TeeAERaeenecs y bs 16
T T T T T T -2.0 T T T T
0 10 20 30 40 50 0 20 40 60 80
Epochs

Epochs

Figure 60: Shape Inpainting batch size comparison with different y-axis scaling. Left:
A comparison of 4 batch sizes. Right: A comparison of the two best batch sizes with a
longer training time of 10 epochs. Here batch size 8 is able to clearly outperform batch

size 16. It still comes with a slower epoch time of 93s (vs 72s for batch size 16). All runs
employ a learning rate of 5e-4.

10

\ 20 [)
\\ 5 R
w1
d 15 Py
N2y
8 L\
NS
1.0 SR, Al
L N
== Ir le-04 Y
0.5 e A
6 Ir 2e-04 o a0
4 —-—- Ir5e-04 4 Rk Db ot ami i i
4 74 e R e SRR 1o e A
2 -=- Irle-03 = 00 WA |) l
—=- Ir2e-03 Rk o % -
4 O] 3
——- Ir3e-03 ~051 AR LN
Bl B
_1.04
2
Ir 2e-04
---------------- o> 157 --- Ir5e-04
=T Nnmmaassy --- Ir1e-03
01— - : . : T —2.01— - : - : ; ; .
0 10 20 30 40 50 0 20 40 60 80 100 120 140
Epochs

Epochs
Figure 61: Shape Inpainting learning rate comparison. Left: A comparison of 6 differ-
ent learning rates with different y-axis scaling. Right: A comparison of the three best

learning rates from the left. Again, the slower 2e-4 is able to clearly outperform the faster
learning rates. All runs emply batch size 16.

A.5 PyTorch and Hardware Setup

For the entirety of the project PyTorch version 1.9.0 and Cuda version 11.0 were used on
Linux. All models were trained on a Quadro RTX 8000 with 45GB of memory. The CPU
was an AMD EPYC 7742 64-core processor. Additionally, mixed precision training via

the torch.cuda.amp package was used for the training of all models, except for the cGlow
model in the Shape Inpainting step.

84

REFERENCES

References

[1]

2]

[3]

4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Katrin Amunts, Claude Lepage, Louis Borgeat, Hartmut Mohlberg, Timo
Dickscheid, Marc-Etienne Rousseau, Sebastian Bludau, Pierre-Louis Bazin, Lind-
say B. Lewis, Ana-Maria Oros-Peusquens, Nadim]. Shah, Thomas Lippert, Karl
Zilles, and Alan C. Evans. “BigBrain: an ultrahigh-resolution 3D human brain
model”. In: Science (New York, N.Y.) (2013). eprint: 340.6139.

Amunts and Zilles. Hirnsammlungen INM-1. Structural and functional organisation
of the brain (INM-1). 2021. URL: https://www.fz-juelich.de/inm/inm-1/
DE/Home/_Schnellzugriff/Hirnsammlung/Hirnsammlung_node.html.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN”. In:
(2017). arXiv: 1701.07875 [stat .ML].

BigBrain dataset release. 2013. URL: https://bigbrain.loris.ca/main.php.

Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. “Deep Gen-
erative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows,
Energy-Based and Autoregressive Models”. In: CoRR abs/2103.04922 (2021). arXiv:
2103.04922.

Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large Scale GAN Training
for High Fidelity Natural Image Synthesis”. In: CoRR abs/1809.11096 (2018). arXiv:
1809.11096.

Timo Dickscheid, Sarah Haas, Sebastian Bludau, Philipp Glock, Marcel Huy-
segoms, and Katrin Amunts. “Towards 3D reconstruction of neuronal cell distri-
butions from histological human brain sections”. In: HPCC proceedings. Braincomp
2019, Cetraro (Italy), 15 Jul 2019 - 19 Jul 2019. IOS press, July 15, 2019, pp. 1-17.

Laurent Dinh, David Krueger, and Yoshua Bengio. “NICE: Non-linear Independent
Components Estimation”. In: (2015). arXiv: 1410.8516 [cs.LG].

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using
Real NVP”. In: CoRR abs/1605.08803 (2016). arXiv: 1605.08803.

Kunihiko Fukushima. “Neocognitron: A Self-Organizing Neural Network Model
for a Mechanism of Pattern Recognition Unaffected by Shift in Position”. In: Biolog-
ical Cybernetics 36 (1980), pp. 193-202.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial
Networks”. In: (2014). arXiv: 1406.2661 [stat.ML].

Sergey loffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167
(2015). arXiv: 1502.03167.

Oleg Ivanov, Michael Figurnov, and Dmitry Vetrov. “Variational Autoencoder with
Arbitrary Conditioning”. In: (2019). arXiv: 1806.02382 [stat .ML].

Abdul Jabbar, Xi Li, and Bourahla Omar. “A Survey on Generative Adversarial
Networks: Variants, Applications, and Training”. In: (2020). arXiv: 2006 . 05132
[cs.CV].

340.6139
https://www.fz-juelich.de/inm/inm-1/DE/Home/_Schnellzugriff/Hirnsammlung/Hirnsammlung_node.html
https://www.fz-juelich.de/inm/inm-1/DE/Home/_Schnellzugriff/Hirnsammlung/Hirnsammlung_node.html
https://arxiv.org/abs/1701.07875
https://bigbrain.loris.ca/main.php
https://arxiv.org/abs/2103.04922
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1806.02382
https://arxiv.org/abs/2006.05132
https://arxiv.org/abs/2006.05132

REFERENCES 85

[15]

[16]

[17]

[18]

[19]

[20]

[26]

[27]

[28]

Tim Kaiser. Neural Inpainting: Repairing Artifacts in Histological Brain Sections with
Deep Generative Models. GitHub. 2021. URL: https://github.com/KaiserTim/
Neural-Inpainting—-Repairing-Histological-Artifacts.

Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based Generator Architec-
ture for Generative Adversarial Networks”. In: CoRR abs/1812.04948 (2018). arXiv:
1812.04948.

Diederik P. Kingma and Prafulla Dhariwal. “Glow: Generative Flow with Invert-
ible 1x1 Convolutions”. In: Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, De-
cember 3-8, 2018, Montréal, Canada. Ed. by Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicold Cesa-Bianchi, and Roman Garnett. 2018,
pp. 10236-10245.

Diederik P. Kingma, Tim Salimans, and Max Welling. “Improving Variational In-
ference with Inverse Autoregressive Flow”. In: CoRR abs/1606.04934 (2016). arXiv:
1606.04934.

Diederik P. Kingma and Max Welling. “An Introduction to Variational Autoen-
coders”. In: Foundations and Trends® in Machine Learning 12.4 (2019), pp. 307-392.

Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings. 2014. arXiv: http://arxiv.org/
abs/1312.6114v10 [stat.ML].

Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. “Normalizing Flows:
An Introduction and Review of Current Methods”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 43.11 (Nov. 2020), pp. 3964-3979.

E. Kuhl and C. Giardina. “Elliptic Fourier features of a closed contour”. In: Computer
Graphics and Image Processing 18 (1982), pp. 236-258.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL:
http://yann.lecun.com/exdb/mnist/.

You Lu and Bert Huang. “Structured Output Learning with Conditional Generative
Flows”. In: (2020). arXiv: 1905.13288 [cs.LG].

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. “Unrolled Genera-
tive Adversarial Networks”. In: CoRR abs/1611.02163 (2016). arXiv: 1611 .02163.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. “Spectral
Normalization for Generative Adversarial Networks”. In: CoRR abs/1802.05957
(2018). arXiv: 1802 .05957.

George Papamakarios, Theo Pavlakou, and Iain Murray. “Masked Autoregressive
Flow for Density Estimation”. In: Advances in Neural Information Processing Systems.
Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.

Joseph Rocca. Understanding Generative Adversarial Networks (GANs). towards data
science. 2019. URL: https://towardsdatascience.com/understanding-
generative—adversarial—-networks—gans—cd6e4651a29.

https://github.com/KaiserTim/Neural-Inpainting-Repairing-Histological-Artifacts
https://github.com/KaiserTim/Neural-Inpainting-Repairing-Histological-Artifacts
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10
https://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1905.13288
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1802.05957
https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

86

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

REFERENCES

Joseph Rocca. Understanding Variational Autoencoders (VAEs). towards data sci-
ence. 2019. URL: https : / / towardsdatascience . com/understanding -
variational—-autoencoders—-vaes—£70510919£73.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Net-
works for Biomedical Image Segmentation”. In: CoRR abs/1505.04597 (2015). arXiv:
1505.04597.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael M. Bronstein. “Temporal Graph Networks for Deep Learning
on Dynamic Graphs”. In: CoRR abs/2006.10637 (2020). arXiv: 2006.10637.

Lars Ruthotto and Eldad Haber. “An Introduction to Deep Generative Modeling”.
In: CoRR abs/2103.05180 (2021). arXiv: 2103.05180.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. “Improved Techniques for Training GANs”. In: CoRR abs/1606.03498
(2016). arXiv: 1606.03498.

Grant Sanderson. But what is a Fourier series? From heat flow to drawing with cir-
cles | DE4. Youtube. 2019. URL: https : / / www . youtube . com /watch?v=
r6sGWTCMz2k.

Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. “A U-Net Based Discrimina-
tor for Generative Adversarial Networks”. In: CoRR abs/2002.12655 (2020). arXiv:
2002.12655.

Eric Upschulte, Stefan Harmeling, Katrin Amunts, and Timo Dickscheid. “Contour
Proposal Networks for Biomedical Instance Segmentation”. In: arXiv:2104.03393
[cs] (Apr. 2021). arXiv: 2104.03393. (Visited on 06/28/2021).

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. “High-Resolution Image Synthesis and Semantic Manipulation with
Conditional GANs”. In: CoRR abs/1711.11585 (2017). arXiv: 1711 .11585.

Wei Xiong, Jiahui Yu, Zhe Lin, Jimei Yang, Xin Lu, Connelly Barnes, and Jiebo Luo.
“Foreground-aware Image Inpainting”. In: CoRR abs/1901.05945 (2019). arXiv:
1901.05945.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. “Free-
Form Image Inpainting with Gated Convolution”. In: CoRR abs/1806.03589 (2018).
arXiv: 1806.035809.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. “Gen-
erative Image Inpainting with Contextual Attention”. In: CoRR abs/1801.07892
(2018). arXiv: 1801.07892.

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2103.05180
https://arxiv.org/abs/1606.03498
https://www.youtube.com/watch?v=r6sGWTCMz2k
https://www.youtube.com/watch?v=r6sGWTCMz2k
https://arxiv.org/abs/2002.12655
https://arxiv.org/abs/1711.11585
https://arxiv.org/abs/1901.05945
https://arxiv.org/abs/1806.03589
https://arxiv.org/abs/1801.07892

LIST OF FIGURES

List of Figures

10

11

12

A selection of sections from two different brains. The left column shows
entire sections, the middle column shows cutouts of medium size and the
right column shows small crops where individual cell bodies are clearly
visible. (Data source: Gehirnsammlung INM-1[2])

Three examples of different histological artifacts from different brains. The
first two depict examples where the chemical used for cell staining at-
tatched to something else than cell bodies and obstructs the tissue un-
derneath. The last one is a large tear in the tissue section. (Data source:
Gehirnsammlung INM-1[2])

High level overview of the three stage Neural Inpainting pipeline. Given
a masked crop of a light microscopic scan of a human brain tissue sec-
tion, the CPN network [36] provides a cell segmentation image that is com-
pleted by the Binary Inpainting stage to provide an auxiliary input to the
Image Inpainting stage.. 0L

A base distribution Z is mapped to a more complex distribution py(Z) via
the generator gy and then compared with the data distribution pg.t,. The
function parameters 6 can then be updated based on this comparison.

Vanilla GAN architecture with example images from the MNIST dataset [23].
Vanilla VAE architecture with example images from the MNIST dataset [23].

Change of variables between the density functions of the base distribution
p-(2) and target distribution p,(x). o oL

Overview of the Modular U-Net Architecture. The very first and last block
are the input and output block which achieve the correct number of chan-
nels for the encoder and model output respectively.

More details on the U-Net block. The numbers below the convolutional
blocks are an example of the transformation of the number of channels of
theinput. L

Three examples of different histological artifacts from different brains. The
first two depict examples where the chemical used for cell staining at-
tatched to something else than cell bodies and obstructs the tissue un-
derneath. The last one is a large tear in the tissue section. (Data source:
Gehirnsammlung INM-1[2])

Three examples of cutouts that make up the intact dataset. (Data source:
Gehrinsammlung INM-1[2])

Overview of the Neural Inpainting pipeline. The three levels in the figure
display the three stages of the Neural Inpainting pipeline, with the sec-
ond stage, the Binary Inpainting, being split into two steps. All networks
except for the cGlow model are based on the U-Net model [30]. For de-
tails on these modular U-Net variants, see section 2.1. All of them employ
skip-connections, which are not depicted in this figure.

87

x O

11

15

17

19

19

21

88

13

14

15

16

17

18

19

20

21

22

LIST OF FIGURES

Overview of the Artifact Localization stage. This network is based on the
U-Net model [30], hence it employs skip-connections between the encoder
and decoder sections. L L L Lo

Overview of the Binary Inpainting stage. The Density Inpainting network
is based on the U-Net model [30] with skip connections between the en-
coder and decoder sections. The Shape Inpainting network is the cGlow
model [24], applied to a cell segmentation image in the Fourier format. . .

Left: A 384x384 crop of a brain scan with a spatial resolution of 1 micron
per pixel. Right: The corresponding cell segmentation image from the
CPNnetwork [36]. e

Left: A labeled cell segmentation image from the CPN network [36].
Right: The representation of this image via the Fourier format. The ma-
trix contains n rows of Fourier coefficients, here 24+2 for each cell, where
24 is a hyperparameter. 2 coefficients are the x- and y-coordinates of the
cell center, the other 24 describe theshape.

Figure 2 and caption from [36]: Contour representation with different set-
tings of the order hyperparameter N. It defines the vector size of the de-
scriptor that is given by 4NV + 2. The higher the order, the more detail is
preserved. The 2d contour coordinates are sampled from the descriptor
space with Eq. 1. Even small settings of IV yield good approximations of
odd and non-convex shapes, in this case human neuronal cells, including
acurved apicaldendrite. o oL L

Left: A binary image of center locations of segmented cells. Right: The
Kernel Density Estimate of the left image using Gaussian filters with band-
width 30/4. Both images have been reduced in size by a factor of 4 along
each dimension compared to the original segmentation image.

Left: The Kernel Density Estimate of the masked image of center locations
of segmented cells from figure 18. Note the darker region to the right of
the image center. Right: The KDE painting, which is a composition of the
original pixels from outside the masked area and the network output for
the pixels inside the masked area.

An inference examples of the Binary Inpainting stage, with crop dimen-

25

26

27

28

28

31

sions are 256x256. The masked region is highlighted for legibility purposes. 33

Overview of the Image Inpainting stage. Both networks are based on the
U-Net model [30]. They employ skip-connections, which are not depicted
in this figure. During inference, only the generatorisused.

Artifact Localization segmentation accuracy evaluation on a run of 10000
examples with crop dimension 384. The segmentation accuracy is the per-
centage of equal pixels in model output and annotation. 100% means the
model’s output was identical to the annotation, not just that the masked
areawas fullycovered. L

LIST OF FIGURES

23

24

25

26

27

28

29

30

31

Artifact Localization sample from the artifact dataset. The sample is a
384x384 crop from a test scan that was not part of the training set. The
large artifact is segmented with a high accuracy of 98.0%.

Artifact Localization sample from the artifact dataset. The sample is a
384x384 from a test scan that was not part of the training set. The blurry
nature of the artifact causes problems for the network and results in a seg-
mentation accuracy of only 86.9%. L.

Results for the first segmented cell count experiment. The segmented cell
counts were accumulated for ground truth crops and paintings separately
over the 10000 examples. (a) Results for the full DI step as described in
2.5.2. (b) Results for the DI step when omitting the sampling at the end
and replacing the segmented cell count with the sum over the KDE image.
(c) Results for the Il model that was trained without auxiliary inputs from
the Binary Inpainting stage.

Results for the second segmented cell count experiment. The absolute
value of the difference in segmented cell count between ground truth crop
and painting is taken for every example. (a) Results for the full DI step as
described in 2.5.2. (b) Results for the DI step when omitting the sampling
at the end and replacing the segmented cell count with the sum over the
KDE image. (c) Results for the Il model that was trained without auxiliary
inputs from the Binary Inpainting stage.

Results for the segmented cell size experiment. (a) Results for the cGlow
model for Shape Inpainting, as described in 2.5.3. (b) Results for the
VAEAC model with the sample-return setting. (c) Results for the same
VAEAC model, but with the mean-return setting. (d) Results for the Im-
age Inpainting model without auxiliary inputs from the Binary Inpainting
stage.

An ellipse in standard position with the major axis along the x-axis. The
eccentricity is the ratio of the focal distance over the major axis length, here
8/10 = 0.8. . . o ot

Results for the segmented cell eccentricity experiment. (a) Results for the
cGlow model for Shape Inpainting, as described in 2.5.3. (b) Results for
the VAEAC model with the sample-return setting. (c) Results for the same
VAEAC model, but with the mean-return setting. (d) Results for the Image

89

39

40

41

42

44

46

Inpainting model without auxiliary inputs from the Binary Inpainting stage. 47

A plot of the first two principal components of the Fourier matrices of
ground truth crops and paintings from the cGlow model. The PCA was
computed on the ground truth matrices and the dimensionality reduction
applied to both matrices.0 0 ..

2 Plots of the first two principal components of the Fourier matrices of
ground truth crops and paintings from the VAEAC model. The PCA was
computed on the ground truth matrices and the dimensionality reduction
applied to both matrices. 0 L.

49

90

32

33

34

35

36

37
38

39

40

41

42

43

44

LIST OF FIGURES

A training example from the Density Inpainting model. The masked KDE
is the result of computing a KDE on an image of segmented cell locations,
where the cells within the masked area have already been removed. The
KDE painting is a composition of pixels from the model’s output and the
ground truth image, not the masked KDE. This painting is for evaluation
purposes only, since only the masked area has to be sampled from during
inference.

A training example from the Density Inpainting model displaying a rather
uniform section in the corrupted area of the painting.

Two inference examples of the cGlow Shape Inpainting model. The crop
dimensions are 256x256 and they were not seen during training. The
masked region is highlighted for legibility purposes..

cGlow Shape Inpainting model inference example with folding artifact.
The right shows the contours of generated cells for order parameter 6. The
small red contour in the top right and the small green contour towards the
bottom are folded in onto themselves, something that can’t happen in the
cell segmentationimage ofarealcrop.

VAEAC Shape Inpainting inference example with the mean-return setting.

51

51

52

53
53

VAEAC Shape Inpainting inference example with the sample-return setting. 54

The same inference example during training in different epochs. These are
not from the initial stages of training anymore and the model is cycling

from large amounts of segmented cells to fewer and back to a large amount. 54

The same inference example during training in different epochs. In epoch
24, the model didn’t generate any new cells, apart from the border region
of the corrupted area where the reconstruction loss provides feedback and
cells that were cut off by the mask are completed in the painting.

Two inference examples of the Image Inpainting model. These are exam-
ples from the intact dataset that were not seen during training. The paint-
ings display good visual quality.

An inference example of the Image Inpainting model. It is from the intact
dataset and was not seen during training. The painting displays strong
visual artifacting. o L

An inference examples of the Image Inpainting model comparing the bi-
nary painting to a segmentation image of the image painting. The same
masked area is cut out in the binary painting and segmentation image of
the image painting. This example was not seen during training.

Two inference examples of the Image Inpainting model from the artifact
dataset. They display good visual quality.

Two inference examples of the Image Inpainting model from the artifact
dataset. They display lacking quality from both, the Image and Binary
Inpaintingmodels. L oL

55

56

56

57

LIST OF FIGURES

45

46

47

48

49

50

51

52

53

54

Two inference examples of the Image Inpainting model when trained with-
out binary paintings as auxiliary input. These are examples from the intact
dataset that were not seen during training, with good visual quality.

Two inference examples of the Image Inpainting model when trained with-
out binary paintings as auxiliary input. These are examples from the intact
dataset that were not seen during training, with visual artifacting and im-
perfections.

44 inference examples for the Artifact Localization model from the artifact
dataset, with crop dimension 256. These examples were not seen during
training.

44 inference examples for the Binary Inpainting model from the intact
dataset, with crop dimension 256. These examples were not seen during
training.

44 inference examples for the Image Inpainting model from the intact
dataset, with crop dimension 256. These examples were not seen during
training.

40 inference examples for the complete Neural Inpainting model from the
artifact dataset, with crop dimension 256. These examples were not seen
during training by anymodel.o o 0oL

Artifact Localization learning rates and batch sizes comparison. Top Left:
A comparison of three learning rates with batch size 16. Top Right: A com-
parison of three learning rates with batch size 32. Bottom: A comparison
of the best combinations from the above graphics. For all runs the width
unit was 64 and the Adam weight decay parameter 5e-3.

Artifact Localization weight decay comparison. Weight decay is adjusted
via the weight decay parameter of PyTorch’s Adam implementation. The
slightly transparent circles (left) and plots (right) depict raw test and train-
ing data respectively. The solid lines in both graphics are exponential mov-
ing averages of the respective raw results. For all runs the batch size was
16, the width unit 64 and the learning rate 4e-4.

Artifact Localization width unit comparison. The slightly transparent cir-
cles (left) and plots (right) depict raw test and training data respectively.
The solid lines in both graphics are exponential moving averages of the re-
spective raw results. For all runs, the batch size was 16, the weight decay
parameter 5e-3 and the learning rate4e-4.

Density Inpainting batch sizes and learning rates comparison. Left: A
comparison of three learning rates with batch size 64. Right: A compari-
son of three learning rates with batch size 128. The width unit was 8 for all
TUNS. © . ot vt et e e

91

60

60

73

74

75

76

77

78

78

92

55

56

57

58

59

60

LIST OF TABLES

Density Inpainting double vs single masking comparison. Single masking
means that the input crop during training is masked before the KDE is
applied, which simulates the inference scenario where this information is
missing in the first place. Double masking means that the masked KDE
image is masked a second time right before it is fed to the network during
training. For both runs the batch size was 64, the learning rate 2e-3 and the
widthunit8. o

Density Inpainting learning rate decay comparison. Here, the regular
learning rate scheduling was switched off. For both runs the batch size
was 64, the initial learning rate 2e-3 and the width unit8.

Density Inpainting width units and learning rates comparison. Different
width units are compared with a range of learning rates. In the last graphic
their best combinations are compared. Because the differences are so mi-
nor, but an increase in model width by a factor of 2 or 4, the final model
useswidthunit8. o L

Shape Inpainting batch size comparison with different y-axis scaling. Left:
A comparison of 4 batch sizes. Right: A comparison of the two best batch
sizes with a longer training time of 10 epochs. While batch size 16 offeres
a faster epoch time of 60s (vs 90s for batch size 8), batch size 8 stays ahead
even in longer training scenarios. All runs employ a learning rate of 5e-4.

Shape Inpainting learning rate comparison. Left: A comparison of 6 differ-
ent learning rates with different y-axis scaling. Right: A comparison of the
two best learning rates. The slower learning rate of 2e-4 is able to catch up
and is thus the preferred choice for longer training runs. All runs employ
batchsize16.

Shape Inpainting batch size comparison with different y-axis scaling. Left:
A comparison of 4 batch sizes. Right: A comparison of the two best batch
sizes with a longer training time of 10 epochs. Here batch size 8 is able to
clearly outperform batch size 16. It still comes with a slower epoch time of
93s (vs 72s for batch size 16). All runs employ a learning rate of 5e-4. . . .

61 Shape Inpainting learning rate comparison. Left: A comparison of 6 dif-
ferent learning rates with different y-axis scaling. Right: A comparison of
the three best learning rates from the left. Again, the slower 2e-4 is able to
clearly outperform the faster learning rates. All runs emply batch size 16.

List of Tables
1 Results for the segmented cell count error (CCE) experiment. All compu-

tations consider the corrupted area only. The CCE is the average over all
examples of the absolute value of the difference in segmented cell count
between corresponding ground truth crops and paintings. The percentage
for the CCE mean is with respect to the total amount of segmented cells in
the ground truth crop, including the uncorrupted area.

79

80

80

82

82

83

83

LIST OF TABLES

2 Results for the segmented cell size error (CSE) experiment. All compu-
tations consider the corrupted area only. The CSE is the average over all
examples of the absolute value of the difference in average segmented cell
size between corresponding ground truth crops and paintings.

3 Results for the segmented cell eccentricity error (CEE) experiment. All
computations consider the corrupted area only. The CEE is the average for
all examples of the absolute value of the difference in average eccentricity
cell size between corresponding ground truth crops and paintings.

93

45

48

	Introduction
	Julich BigBrain Project
	Histological Brain Tissue Sections
	Research Objective
	Approach Overview
	Background on Generative Models

	Methods and Materials
	Modular U-Net for Inpainting
	Training Data
	Problem Analysis and Approach
	Artifact Localization
	Artifact Reparation in Cell Segmentation Images - Binary Inpainting
	Artifact Reparation in Histological Sections - Image Inpainting

	Experiments
	Artifact Localization
	Cell Count in Repaired Cell Segmentation Images
	Cell Size in Repaired Cell Segmentation Images
	Cell Eccentricity in Repaired Cell Segmentation Images
	PCA on Fourier Matrices of Cell Contours
	Qualitative Evaluation of Binary Inpainting Models
	Qualitative Evaluation of Image Inpainting Models

	Discussion and Conclusion
	Discussion
	Conclusion

	Appendix
	Model and Training Details
	Representation of Cell Contours via Fourier Format
	Inference Examples
	Hyperparameter Tuning
	PyTorch and Hardware Setup

	References
	List of Figures
	List of Tables

