000996700 001__ 996700
000996700 005__ 20240711085643.0
000996700 0247_ $$2Handle$$a2128/33868
000996700 037__ $$aFZJ-2023-01129
000996700 041__ $$aEnglish
000996700 1001_ $$0P:(DE-Juel1)174436$$aWolff, Michael$$b0$$eCorresponding author
000996700 1112_ $$a47th International Conference and Expo on Advanced Ceramics and Composites$$cDaytona Beach$$d2023-01-22 - 2023-01-27$$gICACC 2023$$wUSA
000996700 245__ $$aWet powder spraying derived spinel protective coatings for solid oxide cell interconnects
000996700 260__ $$c2023
000996700 3367_ $$033$$2EndNote$$aConference Paper
000996700 3367_ $$2DataCite$$aOther
000996700 3367_ $$2BibTeX$$aINPROCEEDINGS
000996700 3367_ $$2DRIVER$$aconferenceObject
000996700 3367_ $$2ORCID$$aLECTURE_SPEECH
000996700 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1675833492_7061$$xAfter Call
000996700 520__ $$aCr diffusion and Cr2O3 scale formation are widely regarded as one major degradation issue for Cr-containing steel interconnects in solid oxide cells (SOC). Although the application of (Mn,Co)3O4 spinel by atmospheric plasma spraying (APS) has proven as an effective method to improve Cr retention, high processing costs still limit the potential of this approach. In this study, we evaluated wet powder spraying as a fast, scalable and cost-effective alternative to apply protective coatings of Mn1.0Co1.9Fe0.104 (MCF) on Crofer 22H. Deposition of homogeneous coatings have been shown to depend on a complex interplay of surface pre-treatment, slurry composition, wet powder spray process parameters and post-sintering conditions. Defect-free MCF layers with high adhesion strength have been successfully applied by gradual fine-tuning of deposition and sintering parameters. According to microstructural analysis, protective layers remained stable mechanically and chemically with improved Cr retention after thermal treatment for 1000 h at 800 °C. Overall, wet powder spraying shows great potential as a highly efficient and economically viable technique for the application of gas-tight ceramic protective layers in the micrometer range.
000996700 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000996700 536__ $$0G:(BMBF)03SF0621A$$aVerbundvorhaben SOC-Degradation_2 ' Teilvorhaben A (03SF0621A)$$c03SF0621A$$x1
000996700 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x2
000996700 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000996700 7001_ $$0P:(DE-Juel1)179357$$aTreitz, Jan-Philipp$$b1$$eContributor
000996700 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b2$$eContributor
000996700 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b3$$eLast author
000996700 8564_ $$uhttps://juser.fz-juelich.de/record/996700/files/Wolff_ICACC%202023.pptx$$yOpenAccess
000996700 909CO $$ooai:juser.fz-juelich.de:996700$$pdriver$$pVDB$$popen_access$$popenaire
000996700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174436$$aForschungszentrum Jülich$$b0$$kFZJ
000996700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179357$$aForschungszentrum Jülich$$b1$$kFZJ
000996700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b2$$kFZJ
000996700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b3$$kFZJ
000996700 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000996700 9141_ $$y2023
000996700 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000996700 920__ $$lyes
000996700 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000996700 9801_ $$aFullTexts
000996700 980__ $$aconf
000996700 980__ $$aVDB
000996700 980__ $$aUNRESTRICTED
000996700 980__ $$aI:(DE-Juel1)IEK-1-20101013
000996700 981__ $$aI:(DE-Juel1)IMD-2-20101013