001     996700
005     20240711085643.0
024 7 _ |a 2128/33868
|2 Handle
037 _ _ |a FZJ-2023-01129
041 _ _ |a English
100 1 _ |a Wolff, Michael
|0 P:(DE-Juel1)174436
|b 0
|e Corresponding author
111 2 _ |a 47th International Conference and Expo on Advanced Ceramics and Composites
|g ICACC 2023
|c Daytona Beach
|d 2023-01-22 - 2023-01-27
|w USA
245 _ _ |a Wet powder spraying derived spinel protective coatings for solid oxide cell interconnects
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1675833492_7061
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Cr diffusion and Cr2O3 scale formation are widely regarded as one major degradation issue for Cr-containing steel interconnects in solid oxide cells (SOC). Although the application of (Mn,Co)3O4 spinel by atmospheric plasma spraying (APS) has proven as an effective method to improve Cr retention, high processing costs still limit the potential of this approach. In this study, we evaluated wet powder spraying as a fast, scalable and cost-effective alternative to apply protective coatings of Mn1.0Co1.9Fe0.104 (MCF) on Crofer 22H. Deposition of homogeneous coatings have been shown to depend on a complex interplay of surface pre-treatment, slurry composition, wet powder spray process parameters and post-sintering conditions. Defect-free MCF layers with high adhesion strength have been successfully applied by gradual fine-tuning of deposition and sintering parameters. According to microstructural analysis, protective layers remained stable mechanically and chemically with improved Cr retention after thermal treatment for 1000 h at 800 °C. Overall, wet powder spraying shows great potential as a highly efficient and economically viable technique for the application of gas-tight ceramic protective layers in the micrometer range.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a Verbundvorhaben SOC-Degradation_2 ' Teilvorhaben A (03SF0621A)
|0 G:(BMBF)03SF0621A
|c 03SF0621A
|x 1
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 2
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Treitz, Jan-Philipp
|0 P:(DE-Juel1)179357
|b 1
|e Contributor
700 1 _ |a Lenser, Christian
|0 P:(DE-Juel1)138081
|b 2
|e Contributor
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 3
|e Last author
856 4 _ |u https://juser.fz-juelich.de/record/996700/files/Wolff_ICACC%202023.pptx
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:996700
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174436
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179357
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138081
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129636
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21