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A B S T R A C T

The anode overhang has been proven to be a non-negligible influencing factor in the ageing trajectory of
lithium-ion batteries. It acts through the transfer of active lithium between the anode overhang and the active
anode by changing reversibly the cell balancing. In this work, the anode overhang is proven to influence the
open-circuit voltage. Through a high-precision measurement, a persistent rise of the open-circuit voltage was
observed, which we have demonstrated to originate in the anode overhang effect. The dimensions and structure
of the anode overhang were verified by a post-mortem analysis of the cell and matched with the voltage
behaviour. Derived from this finding, an existing electrical–thermal ageing model was extended to allow the
simulation of the interaction between the anode overhang and the capacity. With a Bayesian optimisation
approach, the extended model allowed to drastically improve model parametrisation when ageing test data
include an increase in capacity. The resulting model was verified with the simulation of two ageing profiles,
each including varying ageing conditions and phases of capacity recovery. The model allows ageing predictions
with a deviation below 4% of the remaining capacity after more than 750 days of ageing. The model is publicly
available as part of an open-source project.
1. Introduction

As electrochemical active systems, lithium-ion batteries (LIBs) are
subject to permanent degradation. The degradation or ageing takes
the form of decreasing capacity or increasing inner resistance. The
degradation results in a reduction of energy or power capability. The
rate of degradation and how the degradation is influenced by operating
conditions have been the subject of various ageing studies [1–9]. By
the means of empirical or semi-empirical ageing models, the results of
these ageing studies were made available for the ageing investigation
of real-world applications.

Recent findings showed that lost capacity can be recovered [5,10]
leading to a differentiation between reversible and irreversible capacity
loss. The effect of the anode overhang (AOH) is a prominent driver for
reversible capacity loss. The AOH influences the early capacity trajec-
tory in ageing studies where static state-of-charge (SOC) in calendaric
ageing or fixed average SOC in cyclic ageing are tested [11,12]. Hence,
the influence of the AOH can lead to misinterpretation of ageing test
results [10,13,14], resulting in a need for special consideration of the
AOH in ageing data analysis. Wilhelm et al. [13] showed how the effect
could be tracked via the coulombic efficiency (CE) in repeated cycling.
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Burrel et al. [14] showed that the effect of the AOH distorts the results
of a cycling ageing study if the duration of constant-voltage (CV) charge
phases differs for the test points. Lewerenz et al. discussed in [10]
how the effect of the AOH hides the irreversible ageing trajectory and
presented an approach to find the actual ageing trajectory by including
resting periods into the test. Furthermore, the same author showed
that the homogeneity of lithium distribution (HLD) is a further major
source of reversible capacity loss on the negative electrode, also being
influenced by resting periods [15,16].

For a correct evaluation of ageing test results, a systematic approach
integrating the knowledge about the AOH effect is required. The AOH
is the area of the anode lacking a geometrically opposed cathode,
therefore it cannot directly take part in the charging and discharging
process. The AOH is also described as the passive anode, while the part
of the anode with an opposed cathode is called the active anode. The
AOH can be understood as a reservoir of active lithium connected to
the active anode [11]. The transfer of active lithium from the AOH to
the active anode and back modifies the available lithium inventory for
cycling. Thus, the cell balancing is changed, changing the cell capacity.
The average test SOC is the main driver of the AOH-effect on the
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Fig. 1. Structure of the framework and interactions between the sub-models.
capacity [12,14] and the CE [11,13]. The exchange process between
the active and passive anode is operated by the transport of ions
through the electrolyte [13] and can be influenced by the properties
of the separator [17]. The exchange process is accelerated towards
elevated temperatures [12,18]. The geometry of the AOH influences the
exchange through size and distance of the passive to the active anode
areas [17,18]. As these are all cell design parameters, the influence of
the AOH can be expected to be different for every cell type. Finally,
the effect of the AOH has been proven to impact the comparison of
capacities extracted at different C-rates [15,17].

In order to combine the factors influencing the effect of the AOH
numerous models have been developed. Warnecke [19] and Hüfner
et al. [18] presented a lumped circuit model of the passive anode
area, connected to the active area. The circuit models an ionic current.
The model presented by Hüfner resolved different areas of the passive
anode by parallel circuits. A Newman-type 0D-electrochemical model
was presented by Fath et al. [17]. This model resolved different areas of
the anode overhang by superposition. Schmalstieg et al. [20] integrated
the passive anode in a pseudo-2D-electrochemical model and showed
that it allowed simulating the effect of the AOH.

The model presented in [20] was the only one allowing a combi-
nation with other ageing effects while the other models presented an
isolated consideration of the AOH effect. Ageing data is often analysed
and modelled using a simpler empirical approach [2,6,8], leading to
an over-simplified representation of the actual degradation trajectory
which does not consider the effect of the AOH present in the data. A
model that integrates the AOH into an empirical ageing model would
allow for improving the ageing data analysis and representation. Fur-
ther, it would enable a more accurate degradation trajectory modelling
of real-world applications. Real-world applications are influenced by
the AOH in resting periods such as parking of EVs, changing average
SOC in the operation of a home-storage system or in vehicle-to-grid
scenarios [21], including the AOH would allow reducing the divergence
between simulated degradation and degradation measured in the field.

To address these issues the authors pursued the questions of how
the AOH effect can be integrated into an empirical ageing model and
how could such a model be parametrised accurately. These reflections
led to the question, of whether the effect of the passive anode can be
measured directly in cell voltage rather than as a disturbance of the
capacity or the CE. This paper addresses these questions by first demon-
strating the influence of the anode overhang on the open-circuit voltage
(OCV). Then, an empirical ageing model with a machine learning-
based parametrisation method is presented. The model is verified with
sequences of ageing tests including points of capacity recovery. Finally,
the remaining deviations between the measured ageing trajectory and
the model output are analysed, and the model limits are elucidated.
2

2. Experimental

2.1. Cell characterisation

The lithium-ion battery (LIB) investigated in this work was a pris-
matic NMC111-graphite cell manufactured by Samsung SDI, with a
nominal capacity of 94 Ah. The cell is of type high energy and used
in stationary energy storage applications. The four investigated cells
were commercially acquired. To investigate the cell characteristics, one
cell was disassembled in an Ar-filled glove box. Before disassembling,
the cell was discharged to the end of discharge voltage (EODV) with a
current of 1.88 A (C/50). The electrode sheet dimensions and coating
surfaces were measured using a measuring tape with a precision of
0.5 mm. Single electrode voltage curves were determined using half-
cells built in coin-cells with lithium metal counter-electrodes and a
glass-fibre separator. The differential voltage analysis (DVA) of the half-
cell’s quasi-open-circuit voltage (QOCV)-curves allowed assigning of
the full-cell’s DVA peaks to the electrodes. The electrode chemistry was
verified by inductively coupled plasma - optical emission spectrometry
(ICP-OES).

2.2. Ageing tests

The ageing data to parametrise the ageing model was extracted from
a manufacturer data-sheet. The ageing conditions are listed in Table 1.
For verification purposes, ageing data distinct from the parametrisation
data was used. Two verification profiles were measured: profile 1 and
profile 2. The profiles were composed of test sequences of approx. 30
days. Each sequence had fixed test conditions with mean SOC, depth-
of-discharge (DOD) and temperature. The values of the test conditions
were chosen randomly within the range of real-world applications and
intentionally differed from parametrisation test conditions. At each
sequence transition, the tested cells underwent a check-up (CU) in-
cluding a capacity test. After the CU the test conditions could be
changed. Profile 1 was applied to cell 1 and profile 2 was applied to
cell 2. Cell 3 underwent an ageing test which cannot be disclosed, the
relative capacity at the end of this test was 94%. The OCV voltage
measurements were performed after completing the ageing tests.

2.3. Electrical tests

All charge and discharge operations were performed using Digatron
MCT-100-06-12 ME. All SOCs were set using Ah-counting, relative to
the last discharged capacity. For temperature conditioning in all tests,
the cells were placed in a Binder 53L climate chamber. To parametrise
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the equivalent circuit model (ECM), electrochemical impedance spec-
troscopy (EIS) measurements were performed using a Digatron EISme-
ter. The measurements were done at 21 equidistant SOC levels between
0 and 100%. The EIS were performed at four temperatures: 5 ◦C, 15 ◦C,
25 ◦C and 35 ◦C. QOCV-curves were measured at the aforementioned
temperatures with a current-rate (C-rate) of C/20. To parametrise the
anode overhang model OCV voltage measurements were performed
during rest periods of 10 to 25 days and in the case of cell 3 for a rest
period of > 150 days. Due to constraints of experimental equipment,
the measurement could not start right after the setting of the lowest
SOC at EODV, but with a few days of delay as indicated in Fig. 2(a).
The duration of the resting periods were selected in accordance with
the observed voltage evolution, allowing us to observe the effect of the
voltage whilst shortening the experiment. Cells 1 and 2 were rested
at the following voltage levels: 3 V, 3.4 V, 3.55 V, 3.7 V, 3.9 V and
4.15 V. The cells were first discharged to the EODV and then step-by-
step charged with a constant current of C/10 to the resting voltage
levels. Cell 3 remained at the lowest level, in order to get a data
point for the long-term evolution. The voltage levels and their resting
duration are displayed in Fig. 2(a). The voltage was measured with a
precision of 100 μV using a custom build voltage logger. The voltage
was sampled every two hours. In-between measurements, the LIBs were
disconnected from the measurement circuit by a relay to prevent the
possibility of any leakage currents. The tests were performed at a
constant temperature of 35 ◦C. The resting tests were performed on
the three cells after long-term ageing tests.

3. Model

The presented model was developed on the basis of an electrical–
thermal ageing framework, referred to hereafter as ‘framework’, devel-
oped at our institution and available as an open source project [22].
The purpose of the model is to combine the short-term electrical–
thermal application level of the LIB with the long-term ageing level.
The model is split into three sub-models, each of which is parametrised
individually. This approach was first presented by Schmalstieg et al. [2].
Fig. 1 gives a schematic description of the model, with an overview
of the sub-models. The model is implemented in C++, for details of
the implementation the reader should refer to the work of Hust [23].
Matlab including the optimisation toolbox was used for data processing,
parametrisation and optimisations.

3.1. Electrical–thermal model

The electrical–thermal model is the core of the framework. The
simulation input is a load profile expressed as current over time. The
current profile is processed within the electrical model, composed of
two half-cell OCV-curves and an ECM consisting of a serial resistance
and two RC-circuits (see Fig. 1). A simple ECM was selected as the
focus of this work was the ageing simulation. The split in two half-cell
OCV-curves accommodate a changing cell balancing. All values of the
electrical model are temperature and SOC dependant, the exact values
are provided by look-up tables. The model was parametrised through
the fit of the R2RC-Model to the results of EIS-measurements and
current pulse tests. The electrical simulation and the thermal simulation
are executed in alternating steps to account for their mutual interaction.
The thermal model of the cell is a prismatic thermal block of active
material with anisotropic heat conductivity. The conductivity is higher
along the current collectors. The heat dissipated by the ohmic resistance
of the electrical model in the thermal block is exchanged with the
environment at a constant temperature. This is a simplified model of
3

the test situation in a climate chamber.
3.2. Ageing model

The used ageing model was based on the ageing functions presented
by Schmalstieg et al. [2]. The ageing model has a two-level structure.
The first level describes the capacity and resistance trajectories with
regard to time and charge throughput. In contrast to Schmalstieg et al.
a linear function was used to describe the trajectories. The second level
describes how the coefficients of the first level linear function depend
on the stress factors influencing the LIB ageing. The second level was
described by the following functions, returning the linear coefficients
𝛼 for calendaric and 𝛽 for cyclic ageing.
Calendaric Ageing:

𝛼 = (𝑎1 + 𝑎2 ⋅ 𝑆𝑂𝐶) ⋅ 𝑒−
𝑎3
𝑇 (1)

Cyclic Ageing:

𝛽 = 𝑏1 ⋅ (𝑆𝑂𝐶 + 𝑏2)2 + 𝑏3 ⋅ 𝛥𝐷𝑂𝐷 + 𝑏4 (2)

The calendaric ageing is a function of the stress factors temperature
(T) and SOC. The cyclic ageing was a function of the stress factor’s
average SOC over the cycles and DOD. In order to account for micro and
macro cycles, the DOD values were calculated via a rainflow algorithm.
All model input values of the stress factors were calculated as averages
of the values returned in the electrical–thermal model. The averages
were calculated for a fixed ageing step of one day. For a detailed
description of the parameters, the reader should refer to the original
publication of the model [2]. The model was initially parametrised
through an individual fit of the capacity and resistance trajectories
of calendaric and cyclic ageing tests with a linear function. Points
deviating substantially from the linear trajectory were excluded from
the initial fit. Deviations in the capacity in early life were covered in
the AOH model. Deviations in later life, which were attributed to the
rollover effect [24], were out of the scope of this model. The generated
linear coefficients were used to fit the function (1) and (2) using a non-
linear least square fit. The start values for the global fit were evaluated
using single stress factor fitting. The changes in resistance were mapped
to the serial resistance of the impedance model. The changes in capacity
were mapped to anode and cathode capacity, and to the lithium inven-
tory, defined by the cell balancing. The differentiation between loss of
electrode capacity and lithium inventory in modelling ageing of LIBs
was applied to calendaric ageing in the recent publication by Montaru
et al. [25].

3.3. Anode Overhang Model

The AOH was modelled as a lumped electrical circuit, representing
the lithium-ion flow between the active and the passive anode area [18,
19]. While the active part was modelled through a non-linear voltage
source, parametrised by the anode half-cell OCV-curve, the passive part
was modelled by a capacitance and a resistance representing the size of
the ion reservoir and the hindrance to ionic conduction, respectively.
Thus, the electric circuit formed a serial RC element. The RC circuit was
connected to a virtual lithium inventory which determines the balanc-
ing between anode and cathode half-cell curves. Through changes in
the balancing, the AOH affected the full-cell capacity. The simulation
of the AOH was executed as part of the ageing simulation. As the AOH
is modelled as RC circuit connected to a ‘‘voltage source’’, the exchange
between AOH and the active anode can be described by the following
expression:

𝛥𝐶ℎ𝑎𝑟𝑔𝑒𝐿𝑖(𝑡) = 𝐶𝐴𝑂𝐻 ⋅ (𝑉𝑂𝐻 − 𝑉𝐴𝑛𝑜𝑑𝑒) ⋅ (1 − 𝑒
− 𝑡

𝜏𝐴𝑂𝐻 ) (3)

Where 𝛥𝐶ℎ𝑎𝑟𝑔𝑒𝐿𝑖 is a current of ions, with the unit A and 𝐶𝐴𝑂𝐻
is the modelled capacitance of the anode overhang, which is approx-
imated by the slope of the anode’s QOCV-curve. Following [19] we
assumed an Arrhenius-dependency for the time constant of the AOH:

𝜏 = 𝑐 ⋅ 𝑒
𝐶2
𝑇 (4)
𝐴𝑂𝐻 1



Applied Energy 332 (2023) 120395F. Hildenbrand et al.

w

s
t

𝑅

f
t
c
t
t
c
s
o
m

Table 1
Ageing conditions of the calendaric (Cal.) and cyclic (Cyc.) ageing data used for the model parametrisation. For each condition,
data of a single ageing trajectory was available.

Test
condition
ID

Ageing
type

Temperature SOC
(mean)

DOD Current
charge

Current
discharge

◦C % % C C

A01 Cal. 60 100 – – –
A02 Cal. 60 70 – – –
A03 Cal. 60 40 – – –
A04 Cal. 60 10 – – –
A05 Cal. 10 100 – – –
A06 Cal. 25 100 – – –
A07 Cal. 50 100 – – –
B01 Cyc. 25 50 100 0.5 1
B02 Cyc. 15 50 100 0.5 1
B03 Cyc. 25 87.5 25 0.5 1
B04 Cyc. 25 62.5 25 0.5 1
B05 Cyc. 25 37.5 25 0.5 1
B06 Cyc. 25 12.5 25 0.5 1
B07 Cyc. 35 50 100 0.5 1
B08 Cyc. 45 50 100 0.5 1
B09 Cyc. 5 50 100 0.5 1
B10 Cyc. 25 75 50 0.5 1
B11 Cyc. 25 50 50 0.5 1
B12 Cyc. 25 25 50 0.5 1
The first parameter 𝑐1 is attributed to the geometry of the AOH
hile the second one 𝑐2 is material related. The parametrisation was

initially done through a fit of the RC-circuit to the OCV measured
during resting at different SOC points. This allowed to extract an
average time constant 𝜏, valid for all SOCs, while the temperature
dependency was neglected.

3.4. Global optimisation

In order to improve the quality of the ageing model a global
optimisation of the parameters was setup. The idea was to improve the
interaction of the ageing sub-models: the calendaric, the cyclic and the
AOH model. We used the Bayesian optimisation approach which relies
on Gaussian process regression to model the dependency between the
target variable and the input variables [26]. The optimisation goal was
to minimise the deviation between the capacity curve of the ageing tests
and the simulation result at each specific condition listed in Table 1. In
each iteration of the optimisation, the ageing tests were simulated with
the framework. The model parameters in (1), (2) and (3) were used as
input variables. To quantify the goodness of the simulation the mean-
square error (MSE) of the relative capacity between original data and
simulated ageing was calculated as follows:

𝑀𝑆𝐸𝐶𝑜𝑛𝑑. =
1
𝑛

𝑛
∑

𝑖=0
(𝐶𝑎𝑝𝑀𝑜𝑑𝑒𝑙,𝑖 − 𝐶𝑎𝑝𝑀𝑒𝑎𝑠.,𝑖)2 (5)

The MSEs of each condition were combined in a global root-mean-
quare error (RMSE) that minimises the deviation of all conditions. The
arget variable was calculated as follows:

𝑀𝑆𝐸𝐺𝑙𝑜𝑏. =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=0
𝑀𝑆𝐸𝐶𝑜𝑛𝑑.,𝑖 (6)

With 𝑛 being the number of different ageing conditions.
The optimisation was implemented in Matlab (r2021b), calling the

ramework as an executable compiled for Windows. Each iteration of
he Bayesian optimisation had the following structure: First, all ageing
onditions were simulated using a parallel computing setup. Second,
he simulation results were evaluated against the original data and
he single MSE values were calculated. Based on the global 𝑅𝑀𝑆𝐸𝐴𝑙𝑙
alculated via Eq. (6), the next parameters for a new iteration were
elected. For the selection, a Gaussian process was trained. A variant
f the expected improvement algorithm was used to pick the next
4

odel parameters for a tryout, based on the Gaussian process. The
optimisation was limited to 400 evaluations for each ageing condition.
More iterations did not significantly improve the result. The bounds
for the parameters in (1) and (2) were selected to limit the search area
between the minimal (0 Ah/day) and maximal ageing (0.094 Ah/day).
The lower limit is motivated by the fact these equations do not allow
capacity gain. The upper limit is motivated by the fact that a capacity
loss of more than 1% of the nominal capacity per day was not observed
in the training data.

4. Results and discussion

4.1. Investigation of the open-circuit voltage

As the AOH influences the extractable capacity of a LIB we conjec-
tured that the OCV should be affected by the transfer of ions between
the active and the passive part of the electrode. The OCV is, after a
sufficient resting period of the LIB, a function of the lithiation degree of
both electrodes and the temperature. Hence, an increase of the active
lithium in the active anode should be detectable in the cell voltage.
Through the measurement of the OCV at different SOCs, we observed
a significant and persistent change of the voltage during resting in
dependence on the initial set SOC, as depicted in Fig. 2. The observed
voltage changes are in the range of 5 to 50 mV. For a SOC close to
0% we can observe a voltage increase (Fig. 2(b)–(d)). Self-discharge
can be excluded as an explanation for this behaviour of the OCV as the
voltage increases, which is not an energetically favoured behaviour. A
charge through the measurement device can be excluded as the cell
was disconnected via a relay from the device during the resting time,
except for 20 s measurement time every two hours. We concluded that
the voltage rise must be linked to a redistribution of Li-ions between the
active anode and the AOH. This confirms the observation of Zilbermann
et al. [27], who reported an influence of the AOH on the self-discharge
measurements via OCV-measurements.

For the long-term measurement of cell 3, the detail in 2(b) shows an
increase in two steps. The first step was completed after approximately
ten days. The second step took over 100 days to complete. The voltage
behaviour matched perfectly our findings in the post-mortem study. We
found a jelly roll composed of four wound coils, electrically connected
in parallel at the tabs. Each of the coils presented two longitudinal and
two lateral negative electrode areas without opposite positive electrode,
forming together the AOH (see Fig. 3(b) and (c)). The AOH was 9%
of the total anode active surface (859 cm2 out of 9567 cm2 per coil).
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Fig. 2. After setting the voltage by CC-charging to different levels indicated in (a), the
OCV was measured for consecutive resting periods (b)–(e). For all plots, the indicated
time is set to 0 at the beginning of the voltage measurements.

The AOH area was composed of a much smaller longitudinal area (178
cm2 per coil), which was connected over a larger distance to the active
area. This would allow a fast but short exchange of the active lithium.
Further, it was composed of a bigger lateral area (681 cm2 per coil),
with only the lateral width of the coil connecting to the active area. We
divided the AOH into two types of areas, as depicted in Fig. 3(c): the
well-connected but small ‘‘near’’ AOH and the bigger but significantly
less connected ‘‘far’’ AOH. We associated the two AOHs with the two
phases of the voltage evolution as depicted in Fig. 3(d), the near AOH
with short-term change (<10 days) and the far AOH with long-term
change (>100 days).

Cells 1 and 2 were stepwise charged to higher SOCs with a C-rate
of C/10. The start of the measurement on cell 1 at 0% SOC (Fig. 2(c))
was delayed after the discharge to EODV, hence the voltage had already
time to recover. Voltage recovery after discharge is influenced by the
remaining capacity and the internal resistance of the cell. In this case,
the SOH of cells 1 and 2 was lower than the one of cell 3, hence the
voltage rose higher during the relaxation after discharge. This means
that the voltage of cell 1 starts higher than the one of cell 3. On
the following SOC level of 5%, the voltage trajectory displayed three
phases (Fig. 2(c) and 3(d)). First, the voltage had been dropping sharply
for two days, then it had been decreasing with a smaller gradient for
eight days until it reached a minimum, marked with a green circle in
Fig. 2(c). The initial drop was associated with the relaxation after the
charge. The second phase was associated with the equalisation of the
5

near AOH and the third phase was associated with the equalisation of
the far AOH areas. Finally, the voltage started to rise again. For SOC
18% and all higher SOCs, the voltage measured was always decreasing.
Here, the voltage decrease stabilised to values between 70 μV

day at 3.9 V,
and 180 μV

day at 4.1 V (after 10 days). All further SOC levels showed the
same tendency and are therefore not shown here. Fig. 4 displays the
li-ion-exchange for the three cases.

We assumed that the SOC of both AOH areas, near and far, were at
a SOC above 10% before the experiment. Due to the complex cycling
history, an exact estimation was not possible. The resting at 0% at the
beginning of the experiment discharged the AOH. The near AOH fully
released its lithium content to the active part. For the far AOH, hosting
much more lithium, the process was too slow to empty it completely.
During the resting at 5%, the near AOH was refilled with lithium, hence
the observed cell voltage decreased. After the near AOH was lithiated to
the same level as the active part, the cell voltage rose again. The voltage
rise was driven by the lithium transferred from the far AOH, which still
retained a SOC above 5%. For all SOC levels from 18% upwards, only
a cell voltage decrease was observed. The combination of two factors
led to the decrease. First, the anode OCV had little to no gradient in
the area of the set voltages (3.55 V, 3.7 V, 3.9 V and 4.15 V). Thus,
a change in lithiation of the active anode would not lead to a change
in the cell voltage. Second, with increasing SOC, the SOC of the active
anode area approached and eventually surpassed the SOC of the AOH.
This reduced and inverted the driving force for the transfer of active
lithium from the active part to the AOH. The amount of transferred
lithium got smaller and when the trend was inverted, the effect of the
transfer could not be differentiated from the self-discharge [27,28].

4.2. Modelling of the AOH charge and discharge

The curve of the OCV during resting was used to parametrise a
model of the AOH charge and discharge. Fig. 3(e) depicts the fitted
RC-circuit model composed of three serial RC elements connected in
parallel. The first element, RC Relax, is used to model the relaxation
process in the fit but was not part of the final model. The relaxation
was simulated by the impedance model. The RC near element was fitted
with a time constant in the range of 3 to 15 days. The RC far element
was fitted with a time constant above 50 days. The fit was done at
the three lowest SOC levels for cells 1 and 2 (0%, 5%, 18%). Fig. 3(d)
depicts the fit for cell 1 at a starting SOC of 5%. The model was not
SOC-dependent but was parametrised with average values of the time
constants of the three lowest SOC levels.

For verification purposes, the model was used to simulate the long-
term voltage evolution of cell 3, which was not used to parametrise the
model. Fig. 3(f) depicts the result. The simulation follows the measured
voltage curve. The initial deviation was due to the unknown initial SOC
of both AOH areas, which made it unfeasible to get the right starting
point. The difference in the long-term trend was attributed to the
reversible self-discharge [27] which is overlaid to AOH equalisation,
while it was not implemented into the model.

4.3. Ageing model optimisation

The initially parametrised AOH model was integrated into the
framework as part of the ageing model. The improvement in the
model performance was investigated by simulating the parametrisation
data. Fig. 5 displays the square root of the 𝑀𝑆𝐸𝑐𝑜𝑛𝑑. as defined in
(5) between the simulation and the measurement for different test
conditions and different model configurations. For the benchmark, the
initially parametrised ageing model without AOH model, we observed
a strong initial deviation. Adding the AOH model improved especially
the calendaric tests at high temperatures (A1–A4). This was explained
by the stronger impact of the AOH due to a faster exchange between
the active anode and AOH at higher temperatures. But the overall

performance in all ageing conditions left room for improvement. To



Applied Energy 332 (2023) 120395F. Hildenbrand et al.
Fig. 3. Geometry of the anode overhang and its effect on the open circuit voltage.
Fig. 4. Schematic exchange of active lithium between the active anode, the far and the
near AOH area for cell 1. The initial SOC is indicated for the moment right after the
discharge to the EODV. At each SOC level, the approximate SOC is indicated, which
was reached right before the change of SOC.

enhance the interaction between the models we proposed a combined
parametrisation of the ageing model and AOH model, through global
optimisation. The goal of the optimisation was to reduce the deviation
between the measured and the simulated ageing trajectories for the
ageing conditions in Table 1 by modifying the parameters of the ageing
Eqs. (1), (2) and (4). To keep the number of the optimised parameters
as small as possible in one optimisation pass, the optimisation was split
into several passes. The parameters of the calendaric ageing model
and AOH were optimised together in a first optimisation pass. The
optimisation lead to substantial improvement and allowed us to push
the RMSE to under 1%-point of relative capacity for all calendaric
test conditions (Fig. 5(a)). In the second pass, the cyclic ageing model
parameters were optimised, using the calendaric and the AOH model
with the parameters from the previous optimisation round.

While the second optimisation pass improved most of the condi-
tions, especially at low temperatures in the cyclic ageing (B02, B09) the
model was still showing a strong deviation. We decided to integrate the
effect of the temperature on the cyclic ageing in the model by extending
Eq. (2) as follows:

𝛽 = 𝑏1 ⋅ (𝑆𝑂𝐶 + 𝑏2)2 + 𝑏3 ⋅ 𝛥𝐷𝑂𝐷 + 𝑏4 + 𝑏5 ⋅ (𝑇 − 𝑏6)2 (7)

We chose a second-order polynomial dependency following [29].
The optimisation was repeated with the new ageing function. It allowed
pushing the RMSE for all cyclic conditions below 3%-points of relative
capacity. Meanwhile, it also reduced accuracy in some points, most
6

significantly at 100% DOD and 50% SOC (B01). This indicated an initial
over-fitting on this single condition. The reduction was considered
an acceptable trade-off, as we were seeking a globally good model.
The optimisation returned a temperature for minimal cyclic ageing of
23.6 ◦C (parameter 𝑏6 in Eq. (7)). This was in line with the results of
Waldmann et al. [29], who found a minimal cyclic ageing little below
25 ◦C. Our result was below the value found by Werner et al. [30],
who found a minimal cyclic capacity loss at 32 ◦C but investigated a
different cell chemistry (LCO/NCA-graphite).

4.4. Ageing model verification

The model was verified with two sequences of ageing tests includ-
ing a great variety of ageing conditions (see Fig. 6(a) and (b)). The
current profile measured during the tests was used as the sole input for
the simulation. The measured capacity trajectories of both sequences
depicted as black crosses in Fig. 6(c) and (d) show changing ageing
rates including periods of recovery. The model returned a continuous
capacity, depicted as a line. Obviously, capacity values are not con-
tinuously measurable. For the comparison between the model and the
measurements, the capacity returned by the model at the moment of
the check-up is marked with circles. The initial parametrisation of the
model resulted in much weaker ageing than measured. Optimising the
model and adding the temperature dependency for the cyclic ageing
increased the overall ageing and substantially improved the estimation
accuracy. The simulation was capable of reproducing variations of the
ageing rate and recovery of the capacity, hence the model is suitable
for complex ageing trajectories as measured in the two reference ageing
tests. Further, the model allowed to access the SOC of the AOH which
is a hidden parameter, not accessible by direct measurement in the CU
during the ageing test. Fig. 8(a) depicts the evolution of the SOC of both
AOH and (b) depicts the cumulated lithium transferred from the AOH
to the active anode and back. Both values were calculated by Eq. (3),
cumulating the exchanged lithium, starting from defined AOH SOCs at
the beginning of the test. The far AOH was estimated at around 40%
SOC (likely SOC after formation) at the beginning of the test. Resulting
in the active anode gaining lithium from the far AOH throughout the
whole test. The near AOH SOC was estimated to be around 0% at the
beginning of the test, as the LIBs were stored at 0% SOC shortly before
the test. The near AOH is discharged in a very short time, as shown
before. The charge was mostly transferred from the active part to the
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Fig. 5. Results of the model parametrisation. (a) and (b) depict the RMSE between measured and simulated relative capacity for the different ageing tests used in the model
parametrisation. The RMSE is expressed in %-points as it is calculated for relative capacity values in %. The colours describe the different expansion states of the ageing model.
near AOH. Being then transferred back, leading to an entirely negative
cumulated-transferred lithium.

For profile 1, the final measured capacity was estimated with a
deviation of 0.99 Ah for a lost capacity of 9.97 Ah. Put in relation
to the actual capacity in the last CU of 83.86 Ah, this resulted in a
relative error of 1.18%, after 778 days of simulated load profile. For
profile 2, the deviation was 2.84 Ah for 13.78 Ah of lost capacity. Put
in relation to the actual capacity in the last CU of 79.91 Ah, this resulted
in a relative error of 3.57%, after 776 days of simulated load profile.
Over the course of the simulation, the deviation accumulates, hence the
final deviation is a sweeping value. In Fig. 6, four segments are marked
where the changes in capacity differ strongly between simulation and
measurement. In the case of profile 1, the test and simulation diverged
between CU 5 and CU 6, with a stronger loss of capacity than in
the simulation (marker 1). The trajectories of the simulation and the
test converged again after a strong capacity increase between CU 10
7

and CU 12 (marker 2). In the case of profile 2, the capacity deviates
strongly between CU 3 and 4 (marker 3) and later drops after CU 7
(marker 4). In order to understand the origin of the model’s inaccuracy,
we performed a differential voltage analysis on the test data for the
affected segments of the test.

4.5. Model limitations

Since the model and the measurement converged again after deviat-
ing, we established the hypothesis stating that the deviations originated
in reversible effects not included in the model. Reversible capacity loss
can be attributed to the transfer of active lithium to the AOH or to
the reduction of the cell’s homogeneity, the second of which is not
included in the model. By performing a differential voltage analysis
and tracking the peaks in the 𝑑𝑉

𝑑𝑄 curve the recovery of capacity can
be attributed to either of the effects. In Fig. 7(a), the tracked peaks of
Fig. 6. Model verification profiles applied on cell 1 and cell 2. (a) and (b) depicts the load conditions in each step, (c) and (d) the measured and the simulated capacity with the
initial and the optimised models. For the simulated capacity trajectories, the continuous capacity (cont. capacity) and the capacity at the check-up (CU capacity) are displayed.
Except for the simulated capacity trajectory of the initial model without AOH, where we left the CU capacity out for more clarity.
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Fig. 7. Analysis of the deviation between model and verification profile. The position, the relative distance and the relative height of the peaks indicate the source of the capacity
loss and gain. Prominent points are marked with number 1–4. For identification of the peaks, the QOCV- and DVA-curves of the full-cell as well as the DVA-curves of the half-cells
are plotted in (a) and (b). In (b), to facilitate comparison, the half-cell capacity was scaled to the full-cell capacity and the 𝑦-axis for the anode curve was inverted.
the DVA are defined. In Fig. 7(c) and (d) display the evolution of the
full-cell capacity, the distance of P1 to the fully charged cell (P1), the
distance between P1 and P2 (P1–P2), and the vertical distance between
P2 and P3 (P2–P3). All values are relative to the values in CU 2. All
marked peaks are part of the anode voltage characteristic. P1 quantifies
the relative position of the anode and cathode, as the upper cut-off
voltage is defined by the cathode. Its change, without a change in the
cathode capacity, is equivalent to a change in the cell balancing, which
is often attributed to loss of lithium inventory (LLI) [31]. The distance
P1–P2 quantifies the available active anode material. The peak height
P2–P3 is a quantifier for HLD, as a more pronounced change in voltage
slope correlates with a more homogeneous particle lithiation on the
anode [15].

The evolution of the P1–P2 revealed that capacity lost during the
phases of strong capacity loss followed by a recovery (marker 1,3,4)
was linked to a loss of active anode material that was fully recovered.
The explanation was that the reduction of the HLD would render some
parts of the anode impossible to lithiate or delithiate. This hypothesis
was confirmed by the simultaneous decrease of P2–P3 which indicates
the HLD. At the same time, the value of P1 dropped as well but did
not recover directly. This loss of lithium inventory was also notable
in the model as increased capacity loss due to the transfer of lithium
to the AOH. In the case of the deviation at marker 2, the recovery of
the anode active material played a minor role, but the homogeneity
indicator P2–P3 showed a strong increase, combined with an increase
in the values of P1. The increase in P1 was consistent with the increase
in the model, where it originated from lithium recovered from the
AOH. In all four cases, the deviation between modelled and measured
capacity trajectory showed an influence of HLD, missing in the model,
8

while changes in the trajectory trends in the model were consistent
with changes in the cell balancing (P1). Further reasons for deviation
could be missing integration of path dependency in mixes of cyclic and
calendaric ageing, which needs to be considered especially at higher
C-rates [5,9].

4.6. Separation reversible and irreversible LLI

From the model equation (3) the AOH SOC can be derived by the
cumulation of the transferred lithium (Fig. 8(a)). Using the values of the
lithium transferred from and to the AOH returned by the model equa-
tion (3) directly (Fig. 8(b)) we were able to make a better interpretation
of the changes in the value P1 linked to LLI. The most prominent LLI
causes are SEI growth, irreversible plating and deactivation of lithiated
active material [31,32]. Only considering these causes would explain
an irreversible LLI but not the increases in the value of P1 (change of
P1 > 0 in Fig. 8(b)). Hence, the reversible exchange of lithium with
the AOH needed to be considered. Using the cumulated gained lithium
transferred from the AOH to the active anode at each CU we calculated
the irreversible LLI. The resulting values for the irreversible LLI (red
dotted curve in Fig. 8(b)) were all below zero. Thus, with the help of
the AOH model, we separated reversible from irreversible LLI.

5. Conclusion

In the initial investigation, we demonstrated that the OCV is in-
fluenced by the lithium transferred between the active anode and
the AOH. Depending on its size, the AOH can influence the OCV on
a time scale from a few days to several months. This finding was
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Fig. 8. Simulated evolution of the SoC of the AOH. The model provides separated
values for the overhang area near and far from the active anode part. The lithium
transferred from the AOH allows to calculate the LLI adjusted by the lithium stored in
the AOH.

used to model the effect of the AOH on the LLI and the related
cell balancing. The created model was integrated into an electrical–
thermal ageing model, enabling for the first time the simulation of
reversible capacity loss in a comprehensive LIB ageing model. With
the sole input of a current load profile, the model allowed a long-term
simulation of LIBs including electric, thermal, and ageing behaviour.
The ability of the model to simulate the AOH effect on the ageing
trajectory allowed us to improve the model parameters by reevaluating
the initial ageing parametrisation data. We simulated the ageing tests
and used the model error as input for Bayesian optimisation of the
ageing model parameters. This approach led to a drastic reduction of
the model error. We further improved the ageing model by adding a
cyclic temperature dependency, which was also parametrised through
Bayesian optimisation. The improvements in the model accuracy were
confirmed by the simulation of two verification profiles including a
variety of ageing conditions and phases of capacity recovery. A detailed
analysis of the remaining deviation between the ageing trajectory of
the verification data and of the ageing model showed the pertinence
of the AOH simulation and also the model’s limitations. The remain-
ing deviation could be attributed to the effect of HLD on reversible
capacity loss. Integrating the HLD as a model feature, considering the
impact of temperature on the AOH model, as well as integrating the
capacity rollover are potential paths for future improvements. Further,
as only two cell samples were aged with verification profiles, a certain
contingency could not be excluded from the small deviation between
the predicted and the measured ageing trajectory. This is especially
true considering the high cell-to-cell variation that was observed for
cyclic ageing [33]. Hence, in future work, model verification should
be done with more cell samples and growing cell-to-cell variation over
ageing should be integrated into the model. Undoubtedly, the proposed
model is a powerful tool for the rapid simulation of load profiles and the
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evaluation of their impact on the ageing of LIB. The speed, the rather
simple parametrisation, and the accuracy can be leveraged in scientific
as well as engineering works on LIB.
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