000996739 001__ 996739
000996739 005__ 20240625095121.0
000996739 0247_ $$2doi$$a10.1021/acs.jpcb.1c10954
000996739 0247_ $$2ISSN$$a1520-6106
000996739 0247_ $$2ISSN$$a1089-5647
000996739 0247_ $$2ISSN$$a1520-5207
000996739 0247_ $$2Handle$$a2128/33965
000996739 0247_ $$2pmid$$a35543707
000996739 0247_ $$2WOS$$aWOS:000806447100002
000996739 037__ $$aFZJ-2023-01155
000996739 082__ $$a530
000996739 1001_ $$0P:(DE-HGF)0$$aPalomino-Hernandez, Oscar$$b0
000996739 245__ $$aMolecular Dynamics-Assisted Interpretation of Experimentally Determined Intrinsically Disordered Protein Conformational Components: The Case of Human α-Synuclein
000996739 260__ $$aWashington, DC$$bSoc.$$c2022
000996739 3367_ $$2DRIVER$$aarticle
000996739 3367_ $$2DataCite$$aOutput Types/Journal article
000996739 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679405528_31579
000996739 3367_ $$2BibTeX$$aARTICLE
000996739 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000996739 3367_ $$00$$2EndNote$$aJournal Article
000996739 520__ $$aMass spectrometry and single molecule force microscopy are two experimental approaches able to provide structural information on intrinsically disordered proteins (IDPs). These techniques allow the dissection of conformational ensembles in their main components, although at a low-resolution level. In this work, we interpret the results emerging from these experimental approaches on human alpha synuclein (AS) by analyzing a previously published 73 μs-long molecular-dynamics (MD) simulation of the protein in explicit solvent. We further compare MD-based predictions of single molecule Förster resonance energy transfer (smFRET) data of AS in solution with experimental data. The combined theoretical and experimental data provide a description of AS main conformational ensemble, shedding light into its intramolecular interactions and overall structural compactness. This analysis could be easily transferred to other IDPs.
000996739 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000996739 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000996739 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000996739 7001_ $$0P:(DE-HGF)0$$aSantambrogio, Carlo$$b1
000996739 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b2
000996739 7001_ $$00000-0003-0454-7735$$aFernandez, Claudio O.$$b3
000996739 7001_ $$0P:(DE-HGF)0$$aGrandori, Rita$$b4$$eCorresponding author
000996739 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b5$$eCorresponding author
000996739 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.1c10954$$gVol. 126, no. 20, p. 3632 - 3639$$n20$$p3632 - 3639$$tThe journal of physical chemistry <Washington, DC> / B$$v126$$x1520-6106$$y2022
000996739 8564_ $$uhttps://juser.fz-juelich.de/record/996739/files/Author%20version.docx$$yPublished on 2022-05-11. Available in OpenAccess from 2023-05-11.
000996739 8564_ $$uhttps://juser.fz-juelich.de/record/996739/files/acs.jpcb.1c10954.pdf$$yRestricted
000996739 909CO $$ooai:juser.fz-juelich.de:996739$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000996739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000996739 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000996739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b2$$kFZJ
000996739 9101_ $$0I:(DE-HGF)0$$60000-0003-0454-7735$$aExternal Institute$$b3$$kExtern
000996739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000996739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b5$$kFZJ
000996739 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000996739 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000996739 9141_ $$y2022
000996739 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000996739 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
000996739 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000996739 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000996739 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000996739 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
000996739 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000996739 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000996739 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000996739 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2021$$d2022-11-25
000996739 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000996739 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000996739 920__ $$lyes
000996739 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000996739 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000996739 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
000996739 980__ $$ajournal
000996739 980__ $$aVDB
000996739 980__ $$aI:(DE-Juel1)IAS-5-20120330
000996739 980__ $$aI:(DE-Juel1)INM-9-20140121
000996739 980__ $$aI:(DE-Juel1)JSC-20090406
000996739 980__ $$aUNRESTRICTED
000996739 9801_ $$aFullTexts