TY - JOUR AU - Palomino-Hernandez, Oscar AU - Santambrogio, Carlo AU - Rossetti, Giulia AU - Fernandez, Claudio O. AU - Grandori, Rita AU - Carloni, Paolo TI - Molecular Dynamics-Assisted Interpretation of Experimentally Determined Intrinsically Disordered Protein Conformational Components: The Case of Human α-Synuclein JO - The journal of physical chemistry / B VL - 126 IS - 20 SN - 1520-6106 CY - Washington, DC PB - Soc. M1 - FZJ-2023-01155 SP - 3632 - 3639 PY - 2022 AB - Mass spectrometry and single molecule force microscopy are two experimental approaches able to provide structural information on intrinsically disordered proteins (IDPs). These techniques allow the dissection of conformational ensembles in their main components, although at a low-resolution level. In this work, we interpret the results emerging from these experimental approaches on human alpha synuclein (AS) by analyzing a previously published 73 μs-long molecular-dynamics (MD) simulation of the protein in explicit solvent. We further compare MD-based predictions of single molecule Förster resonance energy transfer (smFRET) data of AS in solution with experimental data. The combined theoretical and experimental data provide a description of AS main conformational ensemble, shedding light into its intramolecular interactions and overall structural compactness. This analysis could be easily transferred to other IDPs. LB - PUB:(DE-HGF)16 C6 - 35543707 UR - <Go to ISI:>//WOS:000806447100002 DO - DOI:10.1021/acs.jpcb.1c10954 UR - https://juser.fz-juelich.de/record/996739 ER -