000996759 001__ 996759
000996759 005__ 20240712113250.0
000996759 0247_ $$2doi$$a10.1016/j.ijhydene.2022.11.288
000996759 0247_ $$2ISSN$$a0360-3199
000996759 0247_ $$2ISSN$$a1879-3487
000996759 0247_ $$2Handle$$a2128/34232
000996759 0247_ $$2WOS$$aWOS:000966458800001
000996759 037__ $$aFZJ-2023-01168
000996759 082__ $$a620
000996759 1001_ $$0P:(DE-Juel1)166215$$aScheepers, Fabian$$b0$$eCorresponding author
000996759 245__ $$aCost-optimized design point and operating strategy of polymer electrolyte membrane electrolyzers
000996759 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
000996759 3367_ $$2DRIVER$$aarticle
000996759 3367_ $$2DataCite$$aOutput Types/Journal article
000996759 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680259943_32589
000996759 3367_ $$2BibTeX$$aARTICLE
000996759 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000996759 3367_ $$00$$2EndNote$$aJournal Article
000996759 520__ $$aGreen hydrogen is a key solution for reducing CO2 emissions in various industrial applications, but high production costs continue to hinder its market penetration today. Better competitiveness is linked to lower investment costs and higher efficiency of the conversion technologies, among which polymer electrolyte membrane electrolysis seems to be attractive. Although new manufacturing techniques and materials can help achieve these goals, a less frequently investigated approach is the optimization of the design point and operating strategy of electrolyzers. This means in particular that the questions of how often a system should be operated and which cell voltage should be applied must be answered. As existing techno-economic models feature gaps, which means that these questions cannot be adequately answered, a modified model is introduced here. In this model, different technical parameters are implemented and correlated to each other in order to simulate the lowest possible levelized cost of hydrogen and extract the required designs and strategies from this. In each case investigated, the recommended cost-based cell voltage that should be applied to the system is surprisingly low compared to the assumptions made in previous publications. Depending on the case, the cell voltage is in a range between 1.6 V and 1.8 V, with an annual operation of 2000–8000 h. The wide range of results clearly indicate how individual the design and operation must be, but with efficiency gains of several percent, the effect of optimization will be indispensable in the future.
000996759 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000996759 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000996759 7001_ $$0P:(DE-Juel1)129930$$aStähler, Markus$$b1$$ufzj
000996759 7001_ $$0P:(DE-Juel1)132718$$aStähler, Andrea$$b2$$ufzj
000996759 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b3$$ufzj
000996759 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b4
000996759 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2022.11.288$$gp. S0360319922056300$$n33$$p12185-12199$$tInternational journal of hydrogen energy$$v48$$x0360-3199$$y2023
000996759 8564_ $$uhttps://juser.fz-juelich.de/record/996759/files/1-s2.0-S0360319922056300-main.pdf$$yOpenAccess
000996759 8767_ $$d2023-04-17$$eHybrid-OA$$jZahlung erfolgt$$zUmbuchung
000996759 909CO $$ooai:juser.fz-juelich.de:996759$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000996759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166215$$aForschungszentrum Jülich$$b0$$kFZJ
000996759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129930$$aForschungszentrum Jülich$$b1$$kFZJ
000996759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132718$$aForschungszentrum Jülich$$b2$$kFZJ
000996759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b3$$kFZJ
000996759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b4$$kFZJ
000996759 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b4$$kRWTH
000996759 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000996759 9141_ $$y2023
000996759 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000996759 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000996759 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000996759 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-29
000996759 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000996759 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-29
000996759 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2022$$d2023-08-25
000996759 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
000996759 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
000996759 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
000996759 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
000996759 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
000996759 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
000996759 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
000996759 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J HYDROGEN ENERG : 2022$$d2023-08-25
000996759 920__ $$lyes
000996759 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000996759 9801_ $$aAPC
000996759 9801_ $$aFullTexts
000996759 980__ $$ajournal
000996759 980__ $$aVDB
000996759 980__ $$aUNRESTRICTED
000996759 980__ $$aI:(DE-Juel1)IEK-14-20191129
000996759 980__ $$aAPC
000996759 981__ $$aI:(DE-Juel1)IET-4-20191129