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Abstract 
Position averaged convergent beam electron diffraction (PACBED) is one of the most convenient and precise thickness determination techniques 
available in a scanning transmission electron microscope. The thickness is determined by finding the best match of the recorded PACBED pattern 
with a series of simulated diffraction patterns by visual inspection. The automatization of this process can be enhanced by convolutional neural 
networks (CNNs), making the method fast and easy to apply. However, the simulation of a synthetic dataset and the training of the CNNs carry a 
high computational cost. With the aim to simplify this process, we propose to build a server-based database of pretrained CNN models that is 
accessed by the user via a web service directly from the data acquisition and analysis software. We demonstrate a working prototype 
comprised of a shared CNN database containing three material systems. By this, the microscope operator can determine the specimen 
thickness by PACBED within a few seconds in a reproducible way during a microscope session, without any prior knowledge about machine 
learning or multislice modeling. Furthermore, the service is integrated into other software and workflows through the API.
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Introduction
Thickness determination of a sample in the transmission elec
tron microscope (TEM) in the dimension parallel to the beam 
is essential for many TEM characterization techniques, such as 
quantitative electron energy loss spectrometry, absorption 
correction in energy dispersive X-ray spectrometry, interpret
ation of coherent image contrast, obtaining volumetric infor
mation from 2D projected features, and for the direct 
relation of experimental data with elastic or inelastic multi
slice calculations (Williams & Carter, 2009; Kirkland, 2010; 
Pennycook & Nellist, 2011; Knez et al., 2020; Lammer 
et al., 2022). Several techniques have been developed, based, 
for instance, on the energy loss of inelastically scattered elec
trons (Egerton, 2011), sample tilting with surface markers 

(Williams & Carter, 2009), electron tomography (Midgley 
& Dunin-Borkowski, 2009), double cross section preparation 
of focused ion beam (FIB) lamellae (Boxleitner et al., 2001), or 
linking TEM analytical spectroscopies (Kothleitner et al., 
2014), to name a few. In scanning transmission electron 
microscope (STEM) mode, in particular, assessing contrast 
variations within overlapping convergent beam electron dif
fraction (CBED) disks has proven to provide accurate thick
ness information for the crystalline specimen (Williams & 
Carter, 2009). For an Ångström-sized electron probe, as rou
tinely obtained in aberration-corrected STEM, the CBED pat
tern is not only very sensitive to the thickness of the specimen 
but also to the position of the probe within the unit cell. To be 
able to measure the actual thickness, LeBeau et al. introduced 
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the position averaged convergent beam electron diffraction 
(PACBED) method, where CBED patterns are averaged over 
different positions of the beam and the obtained diffraction 
pattern is compared with multislice simulations via visual in
spection (LeBeau et al., 2009, 2010). By averaging, the 
PACBED patterns are not affected by spherical aberration, 
defocus, and spatial incoherence (LeBeau et al., 2010). 
Nevertheless, PACBED features are still influenced by sample 
tilt, polarization effects, composition, lattice distortions/ 
strain, inelastic phonon scattering, and amorphous surface 
layers. Dynamical diffraction effects, furthermore, render the 
contrast variations strongly non-linear with increasing thick
ness (Ophus, 2019). However, despite these difficulties, 
PACBED has proven to be a very accurate technique, especial
ly for thin samples (Xu & LeBeau, 2018). The accuracy of this 
method can be further improved by zero-loss energy filtering 
(Pollock et al., 2017).

To reduce the influence of human perception and thereby to 
increase the reliability and reproducibility of the method, ef
forts have been made to automatize this step using least 
squares fitting or machine learning (Gao et al., 2010; Ophus 
et al., 2017; Pollock et al., 2017; Zhang et al., 2020; Shen 
et al., 2021). In particular, in a seminal paper, Xu and 
LeBeau demonstrated the use of convolutional neural net
works (CNNs) that are trained on multislice simulation data 
to extract additional information including pixel size in milli
radian per pixel, center, and rotation as well as sample mistilt 
(Xu & LeBeau, 2018).

Based on this approach, we aim to further speed up and sim
plify the thickness determination process and make it easily 
accessible even for users without knowledge of multislice simula
tions or neural networks. We developed a server-based database 
containing pretrained networks for different materials, experi
mental conditions, and crystallographic orientations that can 
be accessed from a local machine through a web service.

To demonstrate the capability and flexibility of an auto
mated thickness determination, we developed a hybrid 
Python and DM Script application with a graphical user inter
face (GUI) for the Gatan Microscopy Suite (GMS), a software 
that is widely used in the community for data acquisition and 
analysis. Thereby, we are able to obtain the specimen thick
ness and mistilt during a microscopy session directly from 
the data acquisition software with a few mouse clicks only. 
We test the performance of our software on three experimen
tal examples TiO2 (rutile), SrTiO3 (STO), and beryl 
(Be3Al2Si6O18) with two different electron energies, 80 and 
300 keV. Our set of CNNs automatically analyzes and cor
rects for pixel size, center, rotation, small specimen tilt 
(<10 mrad), and variations of convergence angle. The reliabil
ity of the CNN is further tested with artificial and experimen
tal PACBED data containing different levels of Gaussian 
noise, as well as significant surface amorphization.

We propose a material database collecting different PACBED 
trained networks that are trained centrally or collected from 
users, and providing a web service interface to this information 
to the STEM community to allow an easy, instant, and validated 
assessment of sample thickness for many users.

Materials and Methods
All code, instructions, and data are available online, see the 
section “Availability of data and materials”.

PACBED Acquisition
PACBED patterns for the case studies were acquired on a 
probe-corrected FEI Titan3 60–300 G2 STEM operated at ei
ther 80 or 300 kV. The convergence angle was set for rutile 
and STO between 16 and 22 mrad. For beryl, a smaller con
vergence angle of 7 mrad is used. The patterns were recorded 
with an UltraScan CCD camera with a resolution of 2048 × 
2048 pixels. Data acquisition and analysis were performed 
with the GMS (version 3.4). Note that for accessing the data
base from within GMS, its Python capability [available only in 
newer program versions (≥3.4.)] is used.

Sample Preparation
The STO sample was prepared from a single crystalline sample 
via FIB milling using Ga ions with an energy of 30 keV and a 
final polishing step at 5 kV. For preparing the rutile sample, 
wedge polishing and ultra-low-energy milling at 900 V were 
used, utilizing a Fischione Nanomill. The Beryl sample has 
been prepared from a natural crystal from Minas Gerais/ 
Brazil by wedge polishing followed by a cleaning step with 
Ar ions with 1 keV energy using a Gatan PIPS II (10 min@4° 
angle).

Automatic PACBED Analysis
For the PACBED analysis of a specific material system and the 
set of experimental conditions (crystal structure, convergence 
angle range, orientation, and acceleration voltage), three 
CNN models, each within Fig. 1 depicted architecture, were 
trained to predict the scale, the sample thickness, and mistilt. 
The scale is defined as the pixel size ratio of the recorded 
PACBED to the corresponding simulated PACBED. The 
CNNs are implemented in a Python environment (v3.10.) by 
using the Tensorflow (v2.8.) libraries and the included Keras 
API. Each model consists of the Xception architecture 
(Chollet, 2017), which is pretrained with the ImageNet data
set (Deng et al., 2009), with an input dimension of 200 × 
200 pixels for the PACBED pattern, two fully connected layers 
with 1,024 nodes each including dropout layers (Srivastava 
et al., 2014) with a ratio of 0.2 and a Softmax classifier 
(Bishop, 2006). Additionally, to increase the available infor
mation for the network, the convergence angle is provided 
to the fully connected layers. This angle is commonly known 
by the user or given by the microscope.

The CNN models generate a probability figure of merit for 
each of a range of discrete values of scale, thickness, or mistilt 
that the network was trained for. A high predicted probability 

Fig. 1. CNN architecture used for predicting thickness, mistilt, and scale.
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for one of these trained values, while the probability of all other 
values remains low, indicates a clear prediction by the network.

The training of the CNN relies on a massive data set, which 
is generated via PACBED multislice simulations with the 
abTEM code (Madsen & Susi, 2021). The PACBED patterns 
are simulated for each material system with varying experi
mental parameters. Here, we demonstrate and apply our pro
gram to rutile, STO, and beryl, all in 〈0 0 1〉 zone axis with a 
maximum sample thickness of 100 nm in steps of 1 nm. The 
high tension was set to 80 kV for rutile and 300 kV for STO 
and beryl. The convergence angle was varied for beryl between 
5 and 15 mrad and for rutile and STO between 15 and 
25 mrad in steps of 0.5 mrad. Additionally, the sample mistilt 
was varied from 0 to 10 mrad in steps of 1 mrad with an azi
muth (direction of mistilt) varying from 0 to π/2 rad in steps of 
π/10. This results in nearly 130,000 individual simulated pat
terns with a dimension of 200 × 200 px² for each material sys
tem. The total time of generating the dataset is around 7 h on a 
desktop PC with an AMD Ryzen™ 7 3700X and an NVIDIA 
GeForce RTX 2060 Super GPU, which results in around 2 s 
per pattern. The dataset is split into a training set with 95% 
of the patterns and a validation set with 5% of the patterns. 
Although a large number of training images is available, add
itional data augmentation is implemented to avoid overfitting 
and to increase the robustness of the CNNs. Table 1 lists all 
applied transformations with the corresponding ranges. To 
the normalized images, random noise is added, which follows 
a Gaussian distribution with a randomly selected value for the 
standard deviation in a range between 0 and 0.1. It should be 
noted that in experimental data, noise is comprised of both a 
Poisson and a Gaussian contribution dependent on the experi
mental settings. In the Supplementary Information S1, we 
demonstrate that the CNNs trained with Gaussian noise are 
also robust against pure Poisson noise, which justifies our sim
plified approach. Further, the modulation transfer function of 
a typical recording device (e.g., Ultrascan CCD camera) does 
not affect the accuracy of the thickness determination 
(Pollock et al., 2017) and is therefore not considered. To the 
normalized convergence angle, Gaussian noise with a stand
ard deviation of 0.05 is also added for the training.

Training takes around 50 min per epoch on a desktop PC 
with an NVIDIA GeForce RTX 2060 Super GPU. The num
ber of epochs for training depends on the kind of prediction 
(for thickness 40 epochs, for mistilt 20 epochs, and for scale 
5 epochs) and is assessed based on a categorical cross-entropy 
loss function. The models with the lowest validation loss are 
saved and used for the PACBED analysis. Early stopping is im
plemented by terminating the training if the validation loss 
could not be increased in the last 10 epochs.

Before a recorded PACBED can be analyzed, it has to be 
preprocessed. If the dimension of the PACBED image exceeds 

680 × 680 px², it is downsized to this dimension to speed up 
subsequent operations. After preprocessing, the image is re
sized to 200 × 200 px² for the CNN network. In case, the 
PACBED image dimension is lower, and it is upsampled to 
200 × 200 px² already before the preprocessing step. After 
the PACBED is centered by its center of mass, a background 
signal is subtracted, dependent on the corresponding CNN ap
plied thereafter. While for the two CNNs predicting the thick
ness and mistilt a uniform background is subtracted, for the 
scaling CNN a Gaussian blurred image with a standard devi
ation of 90% of the image dimension is used. All images are 
normalized between −1 and 1. Before thickness and mistilt 
prediction, we have to ensure that the PACBED pattern is 
within the size of the training PACBEDs (±20% of the simu
lated PACBEDs due to data augmentation). To this end, the 
pixel size of the PACBED is corrected iteratively with the pre
dicted value of the scale model until it converges or exceeds the 
maximum runs. To avoid oscillation, the iteratively predicted 
values are damped before rescaling the PACBED [see eq. (1)].

sk =
k + (n − k)∗spred

n
(1) 

with sk—damped predicted scale value, spred—predicted scale 
value, n—maximum number of iterations, and k—current 
iteration.

After these processing steps, the PACBED is passed to the 
other two CNN models for thickness and mistilt.

The functionality of the look-up service is demonstrated 
with experimental PACBEDs below (Figs. 2, 3), starting 
from a given crystal structure, to generate a training dataset 
of PACBED patterns. Since the potential parameter space of 
material, zone axis, and acceleration voltage is very large, a 
production deployment should only pretrain common combi
nations of material, zone axis, and high tension. Additional 
combinations can be trained on demand.

Table 1. Applied transformations and value ranges for training data 
augmentation.

Operation Range

Shearing 0.05° (x and y directions)
Rotation ±45°
Shifting ±10% (x and y directions)
Flipping Up/down and left/right
Scaling ±20% (only for thickness and mistilt)
Noise Gaussian noise (σ from 0 to 0.1)

Fig. 2. Functionality of the look-up service in the example of STO. (a) 
Crystal structure of STO, which is used to simulate PACBEDs. (b) Set of 
simulated PACBEDs from STO at 300 kV high tension, 19.5 mrad 
convergence angle, and 5 mrad mistilt with varying specimen thickness. 
(c) Experimental PACBED of STO at 300 kV and 19.6 mrad convergence 
angle (thickness estimated by visual inspection: 29–35 nm). (d) Feedback 
given to the user from the service by submitting the experimental 
PACBED from (c), showing the processed PACBED, the predicted 
PACBED, and the outputs of the CNNs to validate the results.
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Web Service
An overview and the currently implemented components of 
the service are shown in Fig. 4. The CNN look-up is wrapped 
into a simple web service. The user submits parameters (crys
tal, material orientation, high tension, and convergence angle) 
and a PACBED pattern and receives thickness, mistilt, scale, 
and validation information. The request and return type defi
nitions are documented in Fig. 5. Examples and source code 
are available online, see the section “Availability of data and 
materials”. For the first iteration, the material identifier can 
be the string “Rutile”, “Strontium Titanate”, or “Beryl”. 
Validation information consists of a plot with side-by-side 

comparison of the submitted PACBED pattern with the best- 
matching simulation in combination with a graph of the 
matching probability of the CNN look-up for each possible re
turn value (Fig. 2d). The plot is returned as a base64-encoded 
PNG image. In the future, the material identifier should match 
identifiers from a widely accepted structure database such as 
the ICDD Powder Diffraction File, and the returned informa
tion can be extended with information in numerical form to 
match the requirements of the clients.

Currently, an error is returned if no pretrained model with 
matching parameters is available. In the future, an option to 
train the requested model could be provided to users. This 
would queue the training job, create a ticket for users to check 
the status and progress, and possibly notify users as soon as 
the training is complete so that the requested look-up can be 
performed.

Clients
The database can be accessed from three different client appli
cations. First, a web-based form (Fig. 6a) is integrated with the 
web service and where a PACBED pattern can be uploaded. 
Second, a GUI is running within the GMS environment 
(Fig. 6b). And third, a generic Python-based form can be 
used from within any Python-based program. The GMS client 
combines data acquisition, submission to the web service, and 
display of the result into a convenient, streamlined workflow, 
as shown in Fig. 6b. For this, the PACBED pattern in question 
is required to be the foremost active image. Clicking on the 
“Get PACBED pattern” button initializes the process with 
this image, and its name is then shown below the pattern. 
The GUI allows the user to define the crystal structure and 
orientation of the sample. For now, the drop-down list only al
lows the selection between the three pretrained test structures 
STO 〈0 0 1〉, rutile 〈0 0 1〉, and beryl 〈0 0 1〉. The high tension 
and convergence angle used to acquire the PACBED are also 
required and are filled automatically if the information is 

Fig. 3. Functionality of the look-up service in the example of rutile. (a) 
Crystal structure of rutile, which is used to simulate PACBEDs. (b) Set of 
simulated PACBEDs from rutile at 80 kV high tension, 20 mrad 
convergence angle, and 4 mrad mistilt with varying specimen thickness. 
(c) Experimental PACBED of rutile at 80 kV and 20.6 mrad convergence 
angle (thickness estimated by visual inspection: 6–7 nm). (d) Feedback 
given to the user from the service by submitting the experimental 
PACBED from (c), showing the processed PACBED, the predicted 
PACBED, and the outputs of the CNNs to validate the results.

Fig. 4. Service architecture. The currently implemented components are denoted with a solid border, and the planned components with a dashed border. 
DRMAA, distributed resource management API; HTTP, Hypertext transfer protocol; DB, database; HPC, high-performance computing.
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found in the image tags. The look-up request is then started via 
a click on the “Determine Thickness” button, which then up
loads the image and metadata to the service, invokes the CNN 
PACBED analysis, and returns the thickness and the mistilt of 
the specimen. The result can then be further evaluated by the 
user via the feedback sheet (Figs. 2d, 3d) that is also generated 
and shown in a new image window in GMS.

Both the generic Python client and the GMS GUI are avail
able online (https://github.com/MichaelO1993/PACBED- 
CNN/blob/main/client/examples/).

Results
The thickness determination should be fast enough in order to 
provide on-the-fly information directly at the microscope dur
ing an experiment. Therefore, the round-trip time for a request 
has been tested and optimized. We found that the look-up 
takes less than 3 s over a GBit/s scale network connection. 
The request size can be large, in the region of 50 MB, if data 
are acquired using a high-resolution camera and sent in its na
tive size, since the PACBED pattern is transmitted uncom
pressed in numerical form. Uploading this amount of data 
can dominate the round-trip time over a slower network. 

High-resolution patterns can be scaled down before submit
ting to improve performance since the inference will be per
formed at a fixed resolution. See “Automatic PACBED 
analysis” in the Materials and Methods section for details.

A trained model has a size of 275 MB, and the accompany
ing validation dataset takes about 5 GB. However, this valid
ation data, which is only needed to allow the user to check the 
correct prediction, could also be compressed or even generated 
by an “on-the-fly” calculation using fast simulation codes such 
as PRISM (Ophus, 2017) or its implementation in abTEM 
(Madsen & Susi, 2021).

The performance of the automatic thickness determination 
by the CNNs is compared with the least square fitting (LSF) 
method and visual inspection on the example of rutile at a 
high tension of 80 kV. For this purpose, 20 PACBED patterns 
are simulated with random parameters of thickness, mistilt, 
azimuthal direction, and convergence angle within the range 
of the training dataset of the CNNs. These PACBED patterns 
were never seen by the CNNs. The percentage deviation of the 
predicted thickness from the true thickness is compared be
tween the different methods with increasing noise levels 
(Fig. 7). The random noise follows a Gaussian distribution 
with different standard deviations, which is added to the nor
malized image. The performance of the CNNs with Poisson 

Fig. 5. Request and response schema, showing the type definition of each variable. C, class; E, enumerated type.
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noise is similar as demonstrated in Supplementary 
Information S1. The thickness prediction by visual inspection 
is done by comparing the PACBEDs manually with the train
ing dataset to find the best match, starting with the noisiest 
PACBEDs. Note that this process is subjective and can contain 
human errors. For the LSF, a pixelwise L2 norm is calculated 
between the PACBED and a part of the training dataset with 
the closest convergence angle and 0 mrad mistilt. The thick
ness is taken from the PACBED pattern with the lowest L2 
norm. Figure 7 demonstrates that the automatic thickness de
termination by CNN is less sensitive to noise and has better 

accuracy compared to the other methods. The low accuracy 
of LSF could be caused by the low dimension of the images 
with 200 × 200 px² and the mistilt. To improve the results, 
the resolution of the PACBEDs should be increased and the 
database should include mistilts with different azimuthal di
rections. However, this demands higher computational costs 
and memory. Furthermore, the position, rotation, and pixel 
size of experimental PACBEDs have to be precisely aligned 
to match the simulated PACBEDs. Klicken oder tippen Sie 
hier, um Text einzugeben.

Although the CNN models have good accuracy in the pre
diction of simulated PACBEDs, they have to perform also on 
real-world data. Therefore, the same performance test is ap
plied to five experimental PACBEDs from rutile (Fig. 8). 
Reference thicknesses are estimated by visual inspection 
from the PACBEDs with the lowest noise. The automatic 
thickness determination by CNN is again robust against noise. 
Although the percentage deviation reaches up to 20%, the 
maximum absolute difference is only 2 nm from the visual 
thickness estimation, which can contain human errors 
(Fig. 8c).

To keep the number of required models low, each model for 
a particular set of materials, orientation, and high tension is 
trained for a large convergence angle range. Figure 9 shows 
the performance at different convergence angles and degrees 
of surface amorphization on the example of rutile 〈0 0 1〉. 
The PACBEDs are recorded with two different convergence 
angles (16.4 and 23 mrad) at the same spot position. Even 
though the thickness prediction becomes more challenging 
with increasing convergence angles, thicknesses, and levels 
of surface amorphization, the model performs well in 
Figure 9a. In Figure 9b, a mismatch between the thickness pre
diction is visible. The CNN predicts a larger thickness for the 
PACBED, which is recorded with a larger convergence angle. 
However, a second peak is visible, which matches with the 
PACBED with the smaller convergence angle. This thickness 
can also be confirmed by visual inspection. This demonstrates 
the importance of a feedback, providing the user the informa
tion about how reliable the prediction is, and which other 
thicknesses have a high matching probability. Moreover, the 

Fig. 6. Demonstration of the client forms. The screenshots are taken from the web-based form (a) and the GUI in GMS (b) for the PACBED thickness 
determination service.

Fig. 7. Performance of the different methods with simulated PACBED 
patterns at different levels of artificial Gaussian noise. (a) Example of a 
PACBED pattern with different levels of noise. (b) Percentage deviation 
of the predicted thicknesses from the true thickness. CNN, automatic 
thickness determination by CNN; LSF, least square fitting; VIS, visual 
inspection.
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structure mismatch can be used to identify incorrect input pa
rameters by comparing the submitted pattern with the best 
match of the CNN (see Supplementary Information S2).

The reliability and accuracy of the thickness determination 
of the PACBED method depend on the applied acceleration 
voltage, convergence angle, and the thickness itself 
(Supplementary Information S3). This statement is valid 
both for a classic visual determination and for the CNN pre
diction. This behavior can already be observed in the analysis 
of STO (Fig. 2b) and of rutile (Fig. 3b). The PACBED patterns 
of rutile, simulated at 80 kV, exhibit more distinct contrast 
changes with thickness compared to the PACBEDs from 
STO, simulated at 300 kV. This evolves at the broadening 
and lowering of the thickness prediction peak of the CNN 
(Fig. 2d) compared to the thickness prediction at rutile 
(Fig. 3d). The advantage of the CNN prediction is that it might 
give a confidence interval of the estimation. However, it 
should be kept in mind that the PACBED method is not suit
able for arbitrary large acceleration voltages, convergence an
gles, and thicknesses for precise thickness determination. For 
example, a maximum convergence angle of about 20 mrad is 
suggested for STO at 300 kV (LeBeau et al., 2010). For other 
materials such as beryl and other experimental conditions, dif
ferent convergence angles are necessary in order to obtain 
meaningful results. Moreover, the less unique the patterns 
are, the less robust the prediction of the models will be against 
noise and contamination, which, in principle, imposes the 
same limitations as with visual inspection of PACBED data 
(LeBeau et al., 2010), see Supplementary Information S3. It 
shall be noted that the enhanced accuracy by zero-loss energy 
filtering, as shown by Pollock et al. (2017), is lower than the 
thickness resolution of approximately 1 nm that is obtained 
in our case and given by the simulation settings.

The performance of the service also allows creating thick
ness maps, as demonstrated by Xu & LeBeau (2018). A 4D 
STEM dataset containing PACBED patterns is generated by 
subpixel scanning over several unit cells. Figure 10 demon
strates a thickness map of beryl, recorded at a high tension 
of 300 kV, and a convergence angle of 7 mrad. The map con
tains 400 analyzed PACBED patterns. Each pixel can be fur
ther investigated by the corresponding validation plot.

Discussion
The service is currently developed as a demonstrator for three 
material systems. As such, it is already useful for a local de
ployment if the thickness of many specimens with the same 
material and imaging conditions are to be determined. A 
much larger number of materials and imaging conditions 
could be supported for a deployment that is available for a 
wider circle of users. This is a promising candidate for data sci
ence repositories and services such as European Open Science 
Cloud (EOSC) or Novel Materials Discovery (NOMAD) 
(Draxl & Scheffler, 2019). This could be facilitated by the fol
lowing technical improvements in the implementation.

Authentication
Since using the service will bind significant resources com
pared to a simple web page, access should be restricted and 
per-user limits should be implemented. Authentication should 
be integrated with the existing educational identity ecosystem, 

Fig. 8. Performance of the CNN method with experimental PACBEDs at 
different levels of artificial Gaussian noise. (a) Example of an 
experimental PACBED pattern with different levels of noise. (b) 
Percentage deviation of the CNN prediction from the visual inspection. 
(c) Predicted thicknesses of the PACBED pattern with the lowest noise 
by CNN and visual inspection.

Fig. 9. Performance of the CNN for rutile at experimental PACBEDs with 
different convergence angles. (a) Predictions of both convergence 
angles are overlapping (thickness estimated by visual inspection: 44– 
48 nm). (b) Model fails at the larger convergence angle, which is 
recognizable by comparing the recorded PACBED with the predicted 
PACBED. A second peak is visible, which matches with visual inspection 
(thickness estimated by visual inspection: 15–17 nm).
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for example, leveraging eduGAIN or related identity provider 
services (Torroglosa et al., 2018). This provides ease of use 
and a very low barrier of entry while shielding from malicious 
usage. Per-user limits can be implemented using standard rate- 
limiting techniques, constraining the maximum number of 
requests per time unit and per user. The rate limit could be 
realized using an in-memory key-value database, like Redis 
(Carlson, 2013). The concrete rate limit/quota configuration 
depends on the available resources and the number of concur
rent users. If necessary, this can be augmented by a persistent 
allow/deny list, for example, to persistently block users, or 
allow more-than-default quota.

Request Size
In the future, compressed formats could be explored alongside 
the current uncompressed DM4 or numerical raw data, and 
downscaling could be integrated with the web service client 
Application Programming Interface (API) for convenience.

Resource Use of Back-End
Currently, the simulated training dataset for each model is 
stored on the back-end server to look up and display the best- 
matching simulated PACBED pattern for a request. With 106 

structures in the ICDD Powder Diffraction File and potentially 
many combinations of zone axis, acceleration voltage, and con
vergence angle per material, an absolute upper limit of 106 mod
els is assumed for a service that is used ubiquitously for thickness 

determination in STEM. Due to the fact that many structures are 
not suitable for STEM investigation, this can only be a very 
rough estimate for illustration purposes. Scaling the database 
to 106 models would require 5 PB if the validation dataset is 
stored, while the models alone would only require 275 TB. 
The estimated costs of saving a complete database with 106 

models are 5,600 USD per month for the models and 105,000 
USD per month for the validation dataset, assuming a storage 
price of 0.02 USD per GB for a hot data storage (according to 
Google, https://cloud.google.com/storage/pricing, accessed on 
05 October 2022). Measures for size reduction, such as a fast 
on-the-fly simulation, caching, or compression, could be benefi
cial for a production deployment for that reason.

Reducing the model size, utilizing crystal symmetries to 
avoid redundant models, and improving training perform
ance by transfer learning (Pan & Yang, 2009) from similar 
materials, hyperparameter optimization (Falkner et al., 
2018; Yang & Shami, 2020), and further optimizing of the 
source code could also be explored to reduce the cost of a 
production deployment. With a simulation time of 7 h on a 
GPU and 65 training epochs with 50 min per epoch, generat
ing a model requires roughly 61 GPU-hours. At a price of 
about 3 USD per hour (according to Amazon, https://aws. 
amazon.com/ec2/instance-types/p3/, accessed on 26 July 
2022), training a model costs about 184 USD. That means 
a deployment of this service should focus on materials and 
imaging conditions that are used often, and it may require fi
nancial or in-kind contributions from users for the training 
of additional models of their choice. Optimization of data 
generation, training, and model storage as well as sufficient 
funding respectively a business model will be imperative for 
a large-scale deployment that approaches 106 models to 
bring down the cost. The cost of inference is low in compari
son, which is estimated to be about 0.013 ct per request 
based on measured 12 CPU-seconds computation at 4 ct 
per CPU-hour (according to Amazon, https://aws.amazon. 
com/ec2/instance-types/t3/, accessed on 26 July 2022) and 
100 kB outbound traffic per request at 9 ct per GB. 
Nevertheless, rate limits and potentially fees for heavy users 
should be considered.

Deployment and Scaling
Since microscope control computers are often not connected 
to the internet, a local proxy or even a local deployment of 
the look-up engine that pulls trained models from a central 
database could be considered. Furthermore, such local de
ployments could train models locally and submit them to a 
centralized model database, leading to a “sharing economy” 
between users of the service. This would require quality as
surance procedures for a model to be accepted into the 
database.

Assuming 1,000 concurrent users, a centralized service 
should serve 16 requests per second if each user performs 
one thickness determination per minute. Given the perform
ance of the inference, this seems feasible.

Reliability
The quality and robustness test of the look-up is described in 
the Results section. For a production deployment, one should 
explore in more detail how errors can be recognized 

Fig. 10. Thickness (a) and mistilt (b) determination for beryl. The lower 
left corner of the mistilt map contains artifacts due to a hole in the 
specimen. Inside the crystal, a mistilt of ∼6 mrad was found. (c) Example 
of the corresponding validation plot from the marked pixel in (a). 
(d) shows the reference HAADF image.
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automatically and/or by users. Blind trust of the results should 
be avoided since material, specimen preparation, alignment, 
microscope state and settings, charging, contamination, and 
camera characteristics open a large parameter space that will 
probably be explored only gradually by users. A feedback 
mechanism to report issues and disclaimers or user agreements 
to manage liability for wrong results would be of importance 
for a service that is used in production. Manual thickness 
determination suffers from similar potential impact of experi
mental conditions on the result. However, it requires more 
attention from users because it does not provide a result as a 
“magic number” but requires interpretation by the user.

Results can be easier to reproduce if models are archived 
and requests are logged. Creating a DOI for a particular 
look-up with archived request data and model identifier would 
allow to document and reference results that are used in scien
tific publications reproducibly.

Conclusion
The web service to determine specimen thickness based on 
PACBED patterns using pretrained CNN-based models shows 
a promising use case for the integration of online services, re
producibility, and metadata in practical microscopy work
flows. The proof-of-concept client that was integrated with 
Gatan Digital Micrograph is convenient and fast compared 
to previous manual thickness determination. Integration into 
other software, including electronic lab notebooks or data re
positories, seems feasible. Our CNN model has been tested 
with different experimental parameters and acquisition arti
facts and already provides thickness predictions with a high 
level of accuracy and robustness.

In its present form, our program can be used as a local 
deployment for routine analysis of specimens with uniform 
material, orientation, and imaging conditions. Further devel
opments to improve performance and scalability, allow easy 
deployment, implement training on demand, and improve 
quality assurance will likely allow offering this as a service 
for a wider audience. Furthermore, a business model to sustain 
such a service should be found. This could consist of public 
funding, in-kind provision of resources, or usage fees from 
users, to name examples.

Availability of data and materials
All code, instructions, and example data are available from the 
GitHub site of this project: https://github.com/MichaelO1993/ 
PACBED-CNN. The code used for this publication is also avail
able at https://doi.org/10.3217/m55nr-g7v97.

Supplementary material
To view Supplementary material for this article, please visit 
https://doi.org/10.1093/micmic/ozac050.
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