Home > Publications database > Using sub-limb observations to measure gravity waves excited by convection > print |
001 | 996767 | ||
005 | 20240712100903.0 | ||
024 | 7 | _ | |a 10.1038/s41526-023-00259-2 |2 doi |
024 | 7 | _ | |a 2128/33883 |2 Handle |
024 | 7 | _ | |a 36755028 |2 pmid |
024 | 7 | _ | |a WOS:000929401400001 |2 WOS |
037 | _ | _ | |a FZJ-2023-01176 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Wright, Corwin J. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Using sub-limb observations to measure gravity waves excited by convection |
260 | _ | _ | |a [New York, NY] |c 2023 |b Nature Publ. Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1676039526_20438 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Convective gravity waves are a major driver of atmospheric circulation, including the stratospheric and mesospheric quasi-biennialoscillation (QBO) and the Brewer–Dobson circulation. Previous work shows clear evidence that these waves can be excited by bothsingle convective cells and by mesoscale convective complexes acting as a single unit. However, the partitioning of the generatedwaves and, crucially for atmospheric model development, the flux of momentum they transport between these two types ofexcitation process remains highly uncertain due to a fundamental lack of suitable observations at the global scale. Here, we useboth theoretical calculations and sampled output from a high-resolution weather model to demonstrate that a satellite instrumentusing a sub-limb geometry would be well suited to characterising the short-vertical short-horizontal gravity waves these systemsproduce, and hence to provide the scientific knowledge needed to identify the relative wave-driving contribution of these twotypes of convective wave excitation. |
536 | _ | _ | |a 2112 - Climate Feedbacks (POF4-211) |0 G:(DE-HGF)POF4-2112 |c POF4-211 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ungermann, Jörn |0 P:(DE-Juel1)129105 |b 1 |u fzj |
700 | 1 | _ | |a Preusse, Peter |0 P:(DE-Juel1)129143 |b 2 |u fzj |
700 | 1 | _ | |a Polichtchouk, Inna |0 P:(DE-HGF)0 |b 3 |
773 | _ | _ | |a 10.1038/s41526-023-00259-2 |g Vol. 9, no. 1, p. 14 |0 PERI:(DE-600)2823626-9 |n 1 |p 14 |t npj microgravity |v 9 |y 2023 |x 2373-8065 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/996767/files/s41526-023-00259-2.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:996767 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129105 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129143 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-211 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Die Atmosphäre im globalen Wandel |9 G:(DE-HGF)POF4-2112 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-16 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-16 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-16 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-16 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NPJ MICROGRAVITY : 2022 |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:11:33Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:11:33Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:11:33Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-25 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NPJ MICROGRAVITY : 2022 |d 2023-08-25 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |k IEK-7 |l Stratosphäre |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|