000997380 001__ 997380
000997380 005__ 20230929112512.0
000997380 0247_ $$2doi$$a10.3390/drones7020121
000997380 0247_ $$2Handle$$a2128/33941
000997380 0247_ $$2WOS$$aWOS:000945084800001
000997380 037__ $$aFZJ-2023-01182
000997380 082__ $$a620
000997380 1001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b0$$eCorresponding author
000997380 245__ $$aSensitivity of LiDAR Parameters to Aboveground Biomass in Winter Spelt
000997380 260__ $$aBasel$$bMDPI$$c2023
000997380 3367_ $$2DRIVER$$aarticle
000997380 3367_ $$2DataCite$$aOutput Types/Journal article
000997380 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677053550_6777
000997380 3367_ $$2BibTeX$$aARTICLE
000997380 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000997380 3367_ $$00$$2EndNote$$aJournal Article
000997380 520__ $$aInformation about the current biomass state of crops is important to evaluate whether the growth conditions are adequate in terms of water and nutrient supply to determine if there is need to react to diseases and to predict the expected yield. Passive optical Unmanned Aerial Vehicle (UAV)-based sensors such as RGB or multispectral cameras are able to sense the canopy surface and record, e.g., chlorophyll-related plant characteristics, which are often indirectly correlated to aboveground biomass. However, direct measurements of the plant structure can be provided by LiDAR systems. In this study, different LiDAR-based parameters are evaluated according to their relationship to aboveground fresh and dry biomass (AGB) for a winter spelt experimental field in Dahmsdorf, Brandenburg, Germany. The parameters crop height, gap fraction, and LiDAR intensity are analyzed according to their individual correlation with AGB, and also a multiparameter analysis using the Ordinary Least Squares Regression (OLS) is performed. Results indicate high absolute correlations of AGB with gap fraction and crop height (−0.82 and 0.77 for wet and −0.70 and 0.66 for dry AGB, respectively), whereas intensity needs further calibration or processing before it can be adequately used to estimate AGB (−0.27 and 0.22 for wet and dry AGB, respectively). An important outcome of this study is that the combined utilization of all LiDAR parameters via an OLS analysis results in less accurate AGB estimation than with gap fraction or crop height alone. Moreover, future AGB states in June and July were able to be estimated from May LiDAR parameters with high accuracy, indicating stable spatial patterns in crop characteristics over time.
000997380 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000997380 536__ $$0G:(GEPRIS)390732324$$aDFG project 390732324 - EXC 2070: PhenoRob - Robotik und Phänotypisierung für Nachhaltige Nutzpflanzenproduktion $$c390732324$$x1
000997380 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000997380 7001_ $$0P:(DE-HGF)0$$aDonat, Marco$$b1
000997380 7001_ $$0P:(DE-Juel1)190881$$aRaj, Rahul$$b2
000997380 7001_ $$0P:(DE-HGF)0$$aWelter, Philipp$$b3
000997380 7001_ $$0P:(DE-Juel1)180991$$aBates, Jordan Steven$$b4
000997380 773__ $$0PERI:(DE-600)2934569-8$$a10.3390/drones7020121$$gVol. 7, no. 2, p. 121 -$$n2$$p121 -$$tDrones$$v7$$x2504-446X$$y2023
000997380 8564_ $$uhttps://juser.fz-juelich.de/record/997380/files/drones-07-00121-v2.pdf$$yOpenAccess
000997380 8767_ $$d2023-03-09$$eAPC$$jZahlung erfolgt
000997380 909CO $$ooai:juser.fz-juelich.de:997380$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000997380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b0$$kFZJ
000997380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190881$$aForschungszentrum Jülich$$b2$$kFZJ
000997380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180991$$aForschungszentrum Jülich$$b4$$kFZJ
000997380 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000997380 9141_ $$y2023
000997380 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000997380 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000997380 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000997380 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000997380 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000997380 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
000997380 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-15
000997380 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000997380 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-15
000997380 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
000997380 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDRONES-BASEL : 2022$$d2023-08-19
000997380 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
000997380 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:57:19Z
000997380 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:57:19Z
000997380 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:57:19Z
000997380 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
000997380 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
000997380 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-19
000997380 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-19
000997380 920__ $$lyes
000997380 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000997380 9801_ $$aFullTexts
000997380 980__ $$ajournal
000997380 980__ $$aVDB
000997380 980__ $$aUNRESTRICTED
000997380 980__ $$aI:(DE-Juel1)IBG-3-20101118
000997380 980__ $$aAPC