000998573 001__ 998573
000998573 005__ 20240709082120.0
000998573 0247_ $$2doi$$a10.1016/j.ensm.2022.08.021
000998573 0247_ $$2ISSN$$a2405-8289
000998573 0247_ $$2ISSN$$a2405-8297
000998573 0247_ $$2Handle$$a2128/34074
000998573 0247_ $$2WOS$$aWOS:000862781600002
000998573 037__ $$aFZJ-2023-01186
000998573 082__ $$a624
000998573 1001_ $$00000-0002-2916-3968$$aLi, Weihan$$b0$$eCorresponding author
000998573 245__ $$aBattery degradation diagnosis with field data, impedance-based modeling and artificial intelligence
000998573 260__ $$aAmsterdam$$bElsevier$$c2022
000998573 3367_ $$2DRIVER$$aarticle
000998573 3367_ $$2DataCite$$aOutput Types/Journal article
000998573 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677855637_489
000998573 3367_ $$2BibTeX$$aARTICLE
000998573 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000998573 3367_ $$00$$2EndNote$$aJournal Article
000998573 520__ $$aBy collecting battery data from the field and building up the battery digital twin in the cloud, the degradation of batteries can be monitored online on the electrode level and the information regarding the degradation modes can be extracted from the data. Here, we present a degradation diagnosis framework for lithium-ion batteries by integrating field data, impedance-based modeling, and artificial intelligence, revolutionizing the degradation identification with accurate and robust estimation of both capacity and power fade together with degradation mode analysis. By integrating an impedance-based model and an open-circuit voltage reconstruction model, the hybrid model consists of parameters representing the change of impedance in a wide frequency domain and the change of open-circuit voltage during degradation. Based on the field data with low and high dynamics, the data-driven parameter identification method using a multi-step cuckoo search algorithm considering parameter sensitivity differences shows high accuracy and robustness in aging parameter estimation and degradation mode identification even under sensor noise. Furthermore, the data requirement for the battery digital twin in the sense of sampling rate was investigated considering degradation identification accuracy, computational cost, and data storage cost. This work highlights the opportunity in online electrode-level degradation diagnosis in the field through battery modeling and artificial intelligence.
000998573 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000998573 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000998573 7001_ $$0P:(DE-HGF)0$$aChen, Jue$$b1
000998573 7001_ $$0P:(DE-HGF)0$$aQuade, Katharina$$b2
000998573 7001_ $$0P:(DE-HGF)0$$aLuder, Daniel$$b3
000998573 7001_ $$0P:(DE-HGF)0$$aGong, Jingyu$$b4
000998573 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b5
000998573 773__ $$0PERI:(DE-600)2841602-8$$a10.1016/j.ensm.2022.08.021$$gVol. 53, p. 391 - 403$$p391 - 403$$tEnergy storage materials$$v53$$x2405-8289$$y2022
000998573 8564_ $$uhttps://juser.fz-juelich.de/record/998573/files/Preprint.pdf$$yPublished on 2022-09-22. Available in OpenAccess from 2023-09-22.
000998573 909CO $$ooai:juser.fz-juelich.de:998573$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000998573 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b5$$kFZJ
000998573 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000998573 9141_ $$y2023
000998573 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000998573 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
000998573 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-16
000998573 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bENERGY STORAGE MATER : 2021$$d2022-11-16
000998573 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16
000998573 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
000998573 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000998573 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY STORAGE MATER : 2021$$d2022-11-16
000998573 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000998573 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000998573 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000998573 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000998573 9801_ $$aFullTexts
000998573 980__ $$ajournal
000998573 980__ $$aVDB
000998573 980__ $$aUNRESTRICTED
000998573 980__ $$aI:(DE-Juel1)IEK-12-20141217
000998573 981__ $$aI:(DE-Juel1)IMD-4-20141217