| Home > Publications database > Battery degradation diagnosis with field data, impedance-based modeling and artificial intelligence > print |
| 001 | 998573 | ||
| 005 | 20240709082120.0 | ||
| 024 | 7 | _ | |a 10.1016/j.ensm.2022.08.021 |2 doi |
| 024 | 7 | _ | |a 2405-8289 |2 ISSN |
| 024 | 7 | _ | |a 2405-8297 |2 ISSN |
| 024 | 7 | _ | |a 2128/34074 |2 Handle |
| 024 | 7 | _ | |a WOS:000862781600002 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-01186 |
| 082 | _ | _ | |a 624 |
| 100 | 1 | _ | |a Li, Weihan |0 0000-0002-2916-3968 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Battery degradation diagnosis with field data, impedance-based modeling and artificial intelligence |
| 260 | _ | _ | |a Amsterdam |c 2022 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1677855637_489 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a By collecting battery data from the field and building up the battery digital twin in the cloud, the degradation of batteries can be monitored online on the electrode level and the information regarding the degradation modes can be extracted from the data. Here, we present a degradation diagnosis framework for lithium-ion batteries by integrating field data, impedance-based modeling, and artificial intelligence, revolutionizing the degradation identification with accurate and robust estimation of both capacity and power fade together with degradation mode analysis. By integrating an impedance-based model and an open-circuit voltage reconstruction model, the hybrid model consists of parameters representing the change of impedance in a wide frequency domain and the change of open-circuit voltage during degradation. Based on the field data with low and high dynamics, the data-driven parameter identification method using a multi-step cuckoo search algorithm considering parameter sensitivity differences shows high accuracy and robustness in aging parameter estimation and degradation mode identification even under sensor noise. Furthermore, the data requirement for the battery digital twin in the sense of sampling rate was investigated considering degradation identification accuracy, computational cost, and data storage cost. This work highlights the opportunity in online electrode-level degradation diagnosis in the field through battery modeling and artificial intelligence. |
| 536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Chen, Jue |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Quade, Katharina |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Luder, Daniel |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Gong, Jingyu |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Sauer, Dirk Uwe |0 P:(DE-Juel1)172625 |b 5 |
| 773 | _ | _ | |a 10.1016/j.ensm.2022.08.021 |g Vol. 53, p. 391 - 403 |0 PERI:(DE-600)2841602-8 |p 391 - 403 |t Energy storage materials |v 53 |y 2022 |x 2405-8289 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/998573/files/Preprint.pdf |y Published on 2022-09-22. Available in OpenAccess from 2023-09-22. |
| 909 | C | O | |o oai:juser.fz-juelich.de:998573 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172625 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-16 |
| 915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b ENERGY STORAGE MATER : 2021 |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-16 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-16 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENERGY STORAGE MATER : 2021 |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-16 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|