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Ensembles of networks are used as null models in many applications. However, simple null models often

show much less clustering than their real-world counterparts. In this paper, we study a “biased rewiring model”

where clustering is enhanced by means of a fugacity as in the Strauss �or “triangle”� model, but where the

number of links attached to each node is strictly preserved. Similar models have been proposed previously in

Milo et al. �Science 298, 824 �2002��. Our model exhibits phase transitions as the fugacity is changed. For

regular graphs �identical degrees for all nodes� with degree k�2 we find a single first order transition. For all

nonregular networks that we studied �including Erdös-Rényi, scale-free, and several real-world networks�
multiple jumps resembling first order transitions appear. The jumps coincide with the sudden emergence of

“cluster cores:” groups of highly interconnected nodes with higher than average degrees, where each edge

participates in many triangles. Hence, clustering is not smoothly distributed throughout the network. Once

formed, the cluster cores are difficult to remove, leading to strong hysteresis. To study the cluster cores

visually, we introduce q -clique adjacency plots. Cluster cores constitute robust communities that emerge

spontaneously from the triangle generating process, rather than being put explicitly into the definition of the

model. All the quantities we measured including the modularity, assortativity, clustering and number of four

and five-cliques exhibit simultaneous jumps and are equivalent order parameters. Finally, we point out that

cluster cores produce pitfalls when using the present �and similar� models as null models for strongly clustered

networks, due to strong hysteresis which leads to broken ergodicity on realistic sampling time scales.
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I. INTRODUCTION

Networks find wide use as models of complex systems.

They have been applied fruitfully to social �1–3�, technologi-

cal �4�, physical �5–7�, and biological �8� phenomena. The

nodes in a network represent components of the system and

links connecting nodes represent interactions. Various mea-

sures are thought to capture significant overall structural fea-

tures of networks. In this paper, we examine five properties

of particular interest: the degree sequence �9�, which counts

the number of nodes in the network with k links; the cluster-

ing coefficient �10�, which measures the tendency of con-

nected triples of nodes to form triangles; the number of q

cliques, which counts complete subgraphs with q nodes �11�;
the assortativity �12�, which measures the tendency of nodes

to connect to other nodes of similar degree; and the modu-

larity �13�, which measures the tendency of nodes in net-

works to form tightly connected communities. Their formal

definitions are recalled in Sec. II.

Models of network ensembles formalize and guide expec-

tations about real-world networks �14�. The most famous are

the Erdös-Rényi �ER� model of random networks �15�, and

the scale-free Barabási-Albert model �16� of networks grow-

ing by preferential attachment. Comparison with an a priori

realistic “null” model can also indicate which features of a

real network are expected based on the null model, and
which are surprising and thus of interest, as in motif search
�17�. In the latter context, the most popular ensemble is the
configuration model �18� and related variants �19�, in which

all networks with a given number of nodes and a given de-

gree sequence are sampled with equal probability. One prob-

lem with the configuration model is that it shows far too little

clustering—limiting its usefulness. This problem is espe-

cially acute when determining statistical significance of mo-

tifs and other local structures associated with clustering, for

instance, in protein interaction networks �20�.
To remedy this situation, a number of other models have

been introduced that lead to both broad degree distributions

and clustering. Some combine a preferential attachment

mechanism with an explicit transitive rule for triangle forma-

tion �3,21–23�, while others use a predefined degree distri-

bution �as in the configuration model� together with tunable

clustering �24,25�.
A more general approach is to study network ensembles

based on a partition function governed by a Hamiltonian

�26–28�. A model where clustering is enhanced by means of

a fugacity term in a Hamiltonian was introduced by Strauss

and studied in detail in �29,30�. In the Strauss model, both

the density of links and of triangles are controlled by fugaci-

ties. The model is a generalization of the Erdös-Rényi model

with fixed edge probability, not with fixed edge number. A

strong first-order phase transition �30� appears in the Strauss

model separating a phase with weak clustering from a phase*ventres@gmail.com
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where nearly all edges condense into a single densely con-
nected cluster consisting of high-degree nodes. Below the
phase transition the number of triangles increases linearly
with the triangle fugacity for large networks �29,30�. The
phase transition is often seen as a flaw, as it does not admit
moderate clustering observed in most real networks �31�.

Here, we introduce and analyze the biased rewiring model
�BRM�. As in the configuration model, we fix the exact de-
gree sequence—accounting for quenched heterogeneity of
individual nodes. But as in the Strauss model, we control the
average number of closed triangles by a Hamiltonian �28�
containing a conjugate fugacity, or triangle bias �. Fixing the
degree sequence prevents the extreme condensation of edges
seen in the Strauss model, so we might a priori hope to
achieve smooth control of clustering. Indeed, a similar model
with a different Hamiltonian was proposed in �17�.

To our surprise we found that clustering cannot be
smoothly controlled. To search for phase transitions, we plot-

ted a number of network characteristics, such as the cluster-

ing coefficient, against �. In each case and for all nonregular

graphs �i.e., graphs with a nontrivial degree distribution�, we

found a sequence of jumps that look like first order phase

transitions �or large Barkhausen jumps in ferromagnets

�32–34��. Associated with these jumps are significant hyster-

esis effects. Further, we found that high-degree nodes play a

crucial role. Thus it is not surprising that a simpler scenario

holds for regular graphs �same degree k for all nodes�—
where only a single phase transition occurs for all k�2. For

k=2 no transition occurs. Unfortunately it is only in this last

case that we obtain exact analytic results. In all other cases

our results are based on numerical simulations.

At each transition, all measured quantities including the

clustering, number of four and five cliques, assortativity, and

modularity exhibit pronounced, simultaneous jumps. Hence,

any of these quantities can serve as an order parameter for

these transitions. In order to visualize the structures respon-

sible for these jumps we introduce q-clique adjacency plots,

which measure the number of q-cliques each link participates

in. Using the adjacency plots together with a community

detection algorithm �35�, we observe that for each jump a

new strongly connected cluster core appears. The cores are

made of higher than average degree nodes in which each link

participates in many triangles. Indeed, clustering is not

evenly distributed through the network but concentrated into

cluster cores. Hence, these networks cannot be easily classi-

fied into strong or weak clustering overall �36�. While previ-

ous work has shown how assortativity leads to clustering

�25�, or communities lead to clustering �2�, we find the

converse—that clustering leads to communities as well as to

assortativity. The cluster cores are tightly connected commu-

nities of high-degree nodes, thus contributing to both modu-

larity and assortativity. Hence, a transitive relation might be

sufficient to explain both community formation and assorta-

tivity in certain �e.g., social� networks.

Our BRM is similar to a null model introduced in �17�,
where the Hamiltonian was chosen to bias not toward a

larger number of triangles, but toward a specific number. In

order to achieve this reliably, one needs a fugacity which is

larger than that in the BRM. In the limit of large fugacities

this is similar to a model with a hard constraint. In general,

statistical models with hard constraints show slower relax-

ation and worse ergodic behavior than models with soft con-

straints �37�. Hence, we expect that hysteresis effects might

be even more pronounced in the model of �17� than in our

BRM and might render it less useful as a null model, even if

the problem of phase transitions is hidden. For simplicity we

shall in the following call the model of �17� “triangle con-

serving,” although the name is not strictly correct. We find

that for triangle conserving rewiring, important structures re-

main largely unchanged on extremely long time scales, re-

quiring particular care when using the method. Indeed, this

difficulty is also relevant to the conclusions in �38�, where

the number of closed triangles and open wedges with any

specific triple of node degrees was fixed. In general, phase

transitions, strong hysteresis, and persistent structures of

highly connected nodes together present substantial pitfalls

for null models of clustered networks. Sampling from the

ensemble of networks with a desired clustering coefficient

must be done carefully, with the knowledge that the details

of the observed ensemble will depend on the precise sam-

pling method used, and may not reflect much about the un-

derlying ensemble.

In the next section we summarize background informa-

tion, including the precise definitions of the models with un-

biased rewiring and the Strauss model. The definition of the

BRM and our numerical procedure is presented in Sec. II F.

Our main results are found in Secs. III A–III C, while some

results for the model of Milo et al. �17� are presented in Sec.

III D Finally, Sec. IV contains our conclusions.

II. BACKGROUND

A. Degree sequences

The degree of a node is the number of links in which

the node participates. The network’s degree sequence

�nk �k=0,1 . . .kmax� counts the number of nodes in the net-

work with degree k. In this paper we studied regular

�nk=�k,k0
� and Erdös-Rényi �poissonian nk� networks, and

several real world networks with fat tails. Network properties

often depend strongly on the degree sequence �9�. Thus real

networks are often compared with null models, which pre-

serve that property.

B. Clustering coefficient and q cliques

Three nodes are connected if at least two of the three

possible links between them exist. If all three links exist,

they form a triangle. The clustering coefficient �9,39,40�
measures the “transitivity” of relationships in the network,

i.e., the probability that three connected nodes are also a

triangle. Denoting the number of triangles by n� and the

degree of node i by ki, one has

C =
3n�

1

2
�
i=1

N

�ki − 1�ki

=
3n�

N3

, �1�

where N3 is the number of connected triples in the network.

If every relationship in the network is transitive, C=1; if no
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relationships are transitive, C=0. Note that the denominator

of Eq. �1� depends only on the degree sequence, and thus,

C�n� in any ensemble with fixed degrees. In addition to C,

we can also define similar higher order clustering coefficients

based on q cliques, i.e., on complete subgraphs with q nodes,

as

Cq =
qnq-clique

�
i=1

N 	 ki

q − 1



, �2�

where nq-clique is the number of q-cliques in the network.

Notice that C=C3. As we shall see, we can use any Cq as an

order parameter for the phase transitions discussed in this

work.

C. Assortativity

The assortativity r measures the tendency for nodes in the

network to be linked to other nodes with similar degree. It is

defined as the Pearson correlation coefficient between the

degrees of nodes that are joined by a link �12�.

r =

L�
i=1

L

jiki − ��
i=1

L

ji�2

L�
i=1

L

ji
2 − ��

i=1

L

ji�2
. �3�

Here L is the number of links in the network and ji and ki are

the degrees of nodes at each end of link i. If high-degree

nodes are linked exclusively to other high degree nodes, then

r
1. If high degree nodes are exclusively linked to low

degree nodes, r
−1. The assortativity, r also serves as an

order parameter for the BRM.

D. Modularity

A number of heuristic methods exist for identifying com-

munity structure in complex networks �41,42�, each with its

own strengths and weaknesses. We shall use a measure pro-

posed by Newman and Girvan �13� called modularity. As-

sume one has partitioned a network into k nonoverlapping

communities. Define eij as the fraction of all edges which

connect a node in community i to a node in community j.

Thus ai=� jeij is the fraction of all links which connect to

community i. The modularity of the partition is then defined

as:

Q = �
i

�eii − ai
2� , �4�

and the modularity of the network is the maximum of Q over

all partitions. Q measures the fraction of ‘internal’ links, ver-

sus the fraction expected for a random network with the

same degree sequence. It is large when communities are

mostly isolated with few cross links.

The main problem in computing Q for a network is the

optimization over all partitions, which is usually done with

some heuristics. We use a greedy algorithm introduced by

Newman �43� which starts with each node in its own com-

munity �i.e., all communities are of size one�. Joining two

communities i and j would produce a change �Qij. After

checking all pairs �i , j�, the pair with the largest �Qij is

joined. This is repeated until all �Qij are negative, i.e., until

Q is locally maximal. We follow the efficient implementation

of this method described by Clauset et al. �35� and find that

the modularity also serves as an order parameter for the

BRM.

E. Exponential network ensembles and network Hamiltonians

Let us assume that G is a set of graphs. This could be the

set of all graphs with fixed number N of nodes, or with fixed

N and fixed number of links L, or with fixed N and fixed

degree sequence etc. Consider a particular graph G�G. Fol-

lowing �27,28�, a network Hamiltonian H�G� is any function

defined on G, used to define an exponential ensemble �analo-

gous to a canonical ensemble in statistical mechanics� by

assigning a weight

P�G� � e−H�G� �5�

to any graph, similar to the Boltzmann-Gibbs weight.

Examples of exponential ensembles are the Erdös-Rényi

model G�N , p� where H=−L ln�p / �1− p�� and the Strauss

model with

HStrauss = �L − �n�. �6�

Here, p �which is not to be confused with P�G�� is the prob-

ability that a link exists between any two nodes, while � and

� are “fugacities” conjugate to L and n�, respectively.

In the configuration model, G is the set of all graphs with

a fixed degree sequence and H=0. Thus all graphs with the

same degree sequence have the same weight. In the “triangle

conserving” model of Milo et al. �17�, again G is the set of

graphs with fixed degree sequence, but

HMilo = ��n� − n�,0� . �7�

where n�,0 is a prespecified target number of triangles, usu-

ally the number found in the empirical network being stud-

ied. Finally, in the BRM, G is again the same but

HBRM = − �n�. �8�

Thus, while larger weights are given in the BRM with �
�0 to graphs with more triangles �high clustering�, the tri-

angle conserving model of �17� assigns the largest weight to

graphs with n�=n�,0.

F. Simulations: Rewiring

Numerical simulations of these ensembles are often ac-

complished using the Markov chain Metropolis-Hastings

method �37�. This is particularly easy for models without a

fixed degree sequence, such as the Strauss model. There, new

configurations are simply generated by randomly adding or

removing links. This is not possible for the ensembles with a

fixed degree sequence, where the most natural method is

rewiring �19�. Below we first review the unbiased case cor-
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responding to the configuration model, and then discuss the

two biased cases HMilo and HBRM.

1. Unbiased rewiring

Starting from a current graph G, a new graph G� is pro-

posed as follows: Two links, which have no node in com-

mon, are chosen at random, e.g., X−Y and W−Z. Links are

then swapped randomly either to X−W and Y −Z, or to X

−Z and Y −W. If this leads to a double link �i.e., one or both

of the proposed new links is already present�, the new graph

G� is discarded and G is kept. Otherwise, G� is accepted.

This method conserves the degree sequence, satisfies de-

tailed balance, and is ergodic �19�. Thus, it leads to equidis-

tribution among all graphs sharing the same degree sequence

as the original graph. Although no exact results for the speed

of equilibration seem to exist, previous experience �19,20�
suggests that this unbiased rewiring is fast and can be used

efficiently even for large networks.

2. Biased rewiring

For biased rewiring with a Hamiltonian H�G�, the pro-

posal stage is the same as for unbiased rewiring. Only the

acceptance step has to be modified, according to the standard

Metropolis-Hastings procedure �37,44�: If H�G���H�G�,
then G� is accepted—unless it makes a double link. Other-

wise the swap is accepted with probability

p = eH�G�−H�G��p � 1, �9�

unless it makes a double link, and rejected with probability

1− p.

The precise protocols for simulating the two biased mod-

els studied in this paper are different. The BRM starts with

the actual network G0 whose degree sequence we want to

use, and first proposes M0 unbiased swaps, with M0 suffi-

ciently large so that the system ends up in the typical region

of the unbiased ensemble. After that we increase � in small

steps �typically ��=0.002�, starting at �=0. After each step

in �, M1 swaps are proposed in order to equilibrate approxi-

mately, and then at this � an ensemble average is obtained by

making m measurements, each separated by M2 additional

proposed swaps. Thus the total number of proposed swaps at

each fixed � is M1+ �m−1�M2. Typically, M0
106, M1

�105, M2
103–105, and m
500–10 000. The precise

choice of these values depends on the network size, with

larger networks needing more rewiring to equilibrate.

Following the m measurements we increase � and repeat

the procedure, until a preset maximal value �max is reached.

After that, we reverse the sign of �� and continue with the

same parameters M1, M2, and m until we reach again �=0,

thereby forming a hysteresis loop. Triangle bias values dur-

ing the ascending part of the loop are denoted by �+; those in

the descending part are denoted as �−. In cases where we

start from a real world network with n�,0 triangles, we

choose �max sufficiently large so that n���+��n�,0. Then the

range of clustering covered in the hysteresis loop includes

the clustering coefficient of the original network, G0.

For the biased model of Milo et al. �17� we skip the first

stage by setting M0=0, and jump immediately to a value of

�, estimated after preliminary runs, which is large enough to

reach n�,0 at long times. At this �, we make M1 swaps to

equilibrate, and then make m measurements, each separated

by M2 further swaps. An alternative protocol using multiple

annealing periods is discussed in Sec. III D. Averages are

taken only over configurations with exactly n�,0 triangles. If

� is too small, the bias is not large enough to keep n� near

n�,0, and n� drifts to smaller values. Even if � is sufficiently

large in principle, the algorithm slows down if � is near its

lower limit, since n� seldom hits its target value. On the

other hand, if � is too large, most swaps are rejected, leading

to increased relaxation times. Thus choosing an optimal �
for a given network is somewhat delicate.

III. RESULTS

We explored the behavior of the BRM for three different

network classes: k–regular networks, where every node in

the network has degree k; Poisson degree distributions as in

Erdös-Rényi networks; and typical fat-tailed distributions as

in most empirical networks. Although we studied many more

cases �Erdös-Rényi networks with different connectivities

and sizes and several different protein-protein interaction

networks�, we present here only results for k-regular net-

works with different k, for one Erdös-Rényi network, and for

two empirical networks with fat-tailed degree distributions:

A high-energy physics collaboration network �HEP� �45� and

a protein-protein interaction network for yeast �S. cerevisiae�
�46�. Except for k–regular networks, multiple discontinuous

phase transitions appear, while only a single discontinuous

phase transition arises for all k-regular networks with k�2.

A. k-regular networks: analytical and numerical

simulation results

1. Numerical simulations of k-regular graphs

For each k, the configuration with maximal n� is a disjoint

set of �k+1�-cliques, where the graph decomposes into dis-

joint completely connected components of k+1 nodes. When

N is divisible by k+1, this gives

n�
�k,max� =

N

k + 1
	k + 1

3

 . �10�

For k=2, n�
�k,max� is reached in a smooth way for increasing

�. However, for each k	3, and for sufficiently large N, n�

first increases proportional to exp���. Then the increase ac-

celerates and finally n� jumps to a value very close to

n�
�k,max�. This is illustrated for k=3 in Fig. 1, where we plot

hysteresis curves for n� vs �. From this and from similar

plots for different k we observe the following features:

�i� For small �, all curves are roughly described by

n� 

�k − 1�3

6
e� �11�

as indicated by the straight line in Fig. 1. This approximation

seems to become exact as N→
. Note that Eq. �11� is the

same as the corresponding equation for the number of tri-

angles in large exponential random graphs �29,30� with
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�k−1� replaced by �k�. This implies that n� is independent of

N, and the clustering coefficient is proportional to 1 /N.

�ii� While the curves are smooth and do not show hyster-

esis for small N, they both jump and exhibit hysteresis above

a k-dependent value of N. This is our best indication that the

phenomenon is a first order phase transition in the thermo-

dynamic limit, similar to the one in the Strauss model. Above

the jump, the curves saturate, within the resolution of the

plot, the bound given in Eq. �10�.
�iii� The jumps occur when n� becomes extensive. Hence

the value �� where the jump occurs increase approximately

logarithmically with N. Although size dependent transition

points are not very common, there are some well known

examples. These include models with long range or mean

field interactions, where the number of interaction terms in-

creases faster than N. In the present case the reason for the

logarithmic increase is that k-regular graphs become sparser

as N increases. Thus the density of triangles decreases, and

in a Markov chain MC method there are increasingly more

proposed moves which destroy triangles than moves which

create them. To compensate for this, exp���� has to increase

�N.

In Fig. 2, we show the average number of triangles as a

function of � for k-regular networks, for k=2, 3, 5, 10, and

16, with N=400 nodes. For each network we perform M0

=4�106 initial swaps. Each curve corresponds to M1=4

�106 swaps after each increase in �, and M2=2�105 addi-

tional swaps after each of m	5000 measurements at the

same value of �. For clarity we show only values for increas-

ing �, although strong hysteresis occurs for all k	3 when

N=400.

Regular networks with k=2 exhibit no hysteresis, and no

indication of any phase transition. As illustrated in the inset

of Fig. 2, for all values of �, n� is very well described by Eq.

�11� for k=2 up to the point where it reaches the bound in

Eq. �10�. Close to that point there is a small bump in the

curve shown in the inset that is explained next.

2. k=2 analytical results

We now derive analytically Eq. �11� for k=2, and show

how this equation become exact for N→
. A regular k=2

network consists of N nodes and N links arranged in a set of

disjoint simple loops. Triangles are the smallest possible

loops, since self-links and double links are not allowed. For

large N and small � nearly all loops are large. So the number

of loops of length �7 is of order 1 /N and can be neglected

for N→
 for finite �. Since the biased rewiring process

favors the creation of loops of length three, we must keep

track of their number to determine when the process has

reached equilibrium.

Consider now a network of size N with n� triangles and

bias �. The rewiring process reaches equilibrium when the

probability to destroy a triangle is equal to the probability to

create a new one. First we calculate the probability to select

a swap that destroys a triangle. The total number of ways to

choose a pair of links and perform a swap is N=
N�N−1�

2
�2,

where
N�N−1�

2
gives the number of distinct pairs of links and

the extra factor of two accounts for the two possible ways to

swap links. To destroy a triangle, one of the links must be

chosen from it, and the other from a larger loop. The chance

that both links are chosen from triangles, which would lead

to the destruction of both, can be neglected. There are 3n�

possible links in triangles to choose from, and �N−3n�� links

in larger loops. Thus the probability of choosing a swap

which would destroy a triangle is

p�− =
3n��N − 3n�� � 2

N
=

6n�

N
� �1 + O�N−1�� , �12�

where the factor of two in the numerator corresponds to the

fact that both possible swaps destroy a triangle and the cor-

rection term also takes into account the neglected loops of

lengths 4, 5, and 6.

1

10

100

1000

0 1 2 3 4 5

n
∆

β

k = 3

N = 800

N = 400

N = 200

N = 100

N = 60

N = 40

4/3 e
β

FIG. 1. �Color online� Average number of triangles for regular

networks with k=3 vs �. All curves depict full hysteresis cycles,

with M1=2�105 initial swaps after each increment of �, and M2

=5000 additional swaps after each of m=4�104 measurements at

the same value of �. Hysteresis loops are evident for N	200, but

not for N�100. The straight line corresponds to Eq. �11�.

β

n∆

1 3 5 7

1

12

1

6

1

4

n∆

eβ

β
5

10

k = 16

3

2

FIG. 2. Average number of triangles for k-regular networks,

with k=2, 3, 5, 10, and 16, vs the triangle bias or conjugate fugacity

�. Network size is N=400 for all curves. In these simulations � was

slowly increased, until a jump in n� was seen �for k	3�. The

straight line shows the theoretical prediction for k=2: n�=
1

6
e�. The

inset shows n� /e� for k=2. All curves for k�2 exhibit hysteresis at

this value of N but, for clarity, only the curves for increasing � are

shown.
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To add a triangle to the network, two links must be chosen

from the same long loop. They must be separated by exactly

two links. Since � such pairs occur in a loop of length �, the

total number of such pairs in the network is N. This neglects

terms of O�1�, corresponding to the triangles and other loops

shorter than �=7. Hence the probability to add a triangle

p�+ =
N

N
= N−1 � �1 + O�N−1�� , �13�

where there is no factor of two in the numerator because only

one of the two possible swaps creates a triangle. Equilibra-

tion is achieved when

p�+ = e−�p�−, �14�

giving

n� =
e�

6
�15�

up to correction terms of order 1 /N. Indeed Eq. �15� is just

Eq. �11� for k=2.

The simple exponential dependence of n� on � occurs

because swaps create/destroy triangles independently and

one at a time—except in the rare case of breaking up a loop

of length six. For networks with nodes of degree greater than

two this still holds for small �. As � increases, nodes cluster

together more densely, allowing each link to participate in

many triangles. This cooperative behavior is not captured in

Eq. �11�. The presence of triangles helps other triangles to

form and makes it harder for them to be removed. Such

cooperativity explains intuitively the existence of first order

phase transitions for k	3 but not for k=2, where these ef-

fects are not possible.

Indeed, for n� very close to its limit n�
�2,max� some coop-

erativity appears even for k=2. The configuration with n�

=n�
�2,max� can be changed only by breaking up two triangles

and joining their links in a loop of length six. When n� is

close to n�
�2,max�, link swaps which involve two triangles be-

come increasingly prevalent. The tendency to create and de-

stroy triangles two at a time introduces weak cooperativity,

which is only noticable when n�
�2,max�−n�=O�1�. It is not

strong enough to lead to a phase transition, but it explains the

small bump seen in the inset of Fig. 2.

B. Networks with nontrivial degree sequences

We explored the behavior of our BRM for various net-

works. These included ER graphs with different sizes and

different connectivities and several real-world networks. The

latter typically show more or less fat tails. In order to find

any dependence on the fatness, we also changed some of the

sequences manually in order to reduce or enhance the tails.

We found no significant systematic effects beyond those vis-

ible already from the following three typical networks, and

restrict our discussion to these: an ER graph �15�, a HEP

�45�, and a yeast protein binding network �Yeast� �46�. Table

I collects some of their properties.

Figures 3–5 show the clustering coefficient C=3n� /N3.

for these three networks. In each case M0=106, M1=1.5

�105, M2=50000, and m=500. In each of them a full hys-

teresis cycle is shown, with the lower curves �labeled �+�
corresponding to increasing and the upper curves ��−� corre-

sponding to decreasing �. In Figs. 4 and 5 the dotted line

shows the number of triangles in the empirical networks.

These fall well within the hysteresis loops.

For small values of �+ all three figures exhibit exponential

increase in the clustering coefficient similar to that observed

in k-regular networks. At different values of �, however,

there is a sudden, dramatic increase in C, which does not

lead to saturation as it did for k-regular networks. The first

phase transition is followed by a series of further transitions

TABLE I. The number of nodes �N�, the number of links �L�, the average degree �k�, the clustering

coefficient �C�, the assortativity �r�, the modularity �Q�, and the number of connected triples �N3� for each of

the networks discussed in Sec. III B. ER stands for Erdös-Rényi. HEP is the scientific collaboration network

in �45�, and Yeast is the protein-protein interaction network in �46�.

Network properties

Network N �k� C r Q N3

ER 800 5.0 0.002 −0.0004 0.196 10560

HEP 7610 4.1 0.33 0.29 0.397 121083

Yeast 1373 10.0 0.58 0.58 0.380 104970

β

β−

β+

C

FIG. 3. Clustering coefficient C in the BRM for an ER graph

with N=800 nodes and �k�=5, plotted against the triangle bias �.

The lower curve corresponds to slowly increasing �, the upper to

decreasing �.
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through which the network becomes more and more clus-

tered. Many of the jumps are comparable in absolute magni-

tude to the first jump. Although the rough positions of the

jumps depend only on the degree sequences, their precise

positions and heights change slightly with the random num-

ber sequences used and with the speed with which � is

ramped up and down. Thus the precise sequence of jumps

presumably has no deep significance, but the existence of

jumps and the general appearance of the hysteresis loops

seem to be a universal feature found in all cases.

Associated with the jumps in C are jumps in all other

network characteristics we looked at; see Fig. 6. The jumps

in the other quantities always occur at exactly the same po-

sitions as those in C or, equivalently, n�. Obviously, at each

jump a significant restructuring of the network occurs, which

affects all measurable quantities. Speculations as to how

these reorganizations can best be described and what is their

most “natural” driving mechanism are put forward in Sec.

III C.

In the downward branch of the hysteresis loop, as �−

decreases toward zero, the clustering coefficient remains

high for a long time, forming a significant hysteresis loop.

This loop suggests that all jumps should be seen as discon-

tinuous, first order phase transitions. Since all studied

systems are finite, these hysteresis loops disappear for infi-

nitely slow ramping of �. But the sampling shown involved

�2.5�106 attempted swaps for each value of �, and no

systematic change in the hysteresis was seen when compared

to sweeps that were twice as fast.

In Fig. 7, we plot the assortativity against the number

of triangles for the same values of �
, normalizing both

quantities to the unit interval. We guessed that in this way we

might find universal curves which are the same for �+ and

�−, and maybe even across different networks. Indeed, we

see a quite remarkable data collapse. It is certainly not per-

fect, but definitely better than pure chance. It suggests that

the triangle bias in the BRM leads to networks where the

two characteristics n� /n�,max and �r−rmin� / �rmax−rmin� are

strongly—but nonlinearly correlated. Roughly similar col-

lapse was found for other quantities such as the modularity.

This indicates a potential scaling relationship between these

order parameters in the BRM. For the two empirical net-

β

β−

β+

C

FIG. 4. Similar to Fig. 3, but for the BRM of the HEP network.

The dotted line indicates the clustering coefficient in the real net-

work, which falls well within the hysteresis loop.

β−

β+

β

C

FIG. 5. Same as Fig. 4, but for the BRM of the Yeast

network.

β

C3

C4

r

Q

FIG. 6. �Color online� Four network characteristics: modularity

�Q�, clustering coefficient �C3�, four-clique clustering coefficient

�C4�, and assortativity �r� vs � for the BRM of the Yeast network.

These data are drawn from the same simulation as in Fig. 5, but for

clarity only the results for increasing values of � are shown. All

quantities exhibit simultaneous jumps and hence serve as equivalent

order parameters for the transitions.
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FIG. 7. �Color online� Values of the rescaled characteristics

n� /n�,max and �r−rmin� / �rmax−rmin�, measured at the same values

of �
, and plotted against each other. The points represent the val-

ues for the real HEP and Yeast networks.
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works, we show also the real values of these characteristics.

They fall far from the common curve, indicating that these

networks are not typical for the BRM at any value of �.

Among the networks studied here, the ER network is clos-

est to a k-regular network, so it could be expected to show

behavior closest to that studied in the last subsection. But

this is not evident Figs. 3–5. However, hysteresis appears to

be more closely tied to individual jumps for the ER network,

while it is more global �and thus, also more important over-

all� for HEP and Yeast networks.

For the HEP and Yeast networks, we can compare the

clustering of the BRM ensemble to that in the real empirical

networks. The latter numbers are shown as dashed lines in

Figs. 4 and 5. In both cases, the line intersects the hysteresis

loop where it is very broad. This means that a large value of

�+ is required to reach the real network’s level of clustering

when the bias is increased, whereas a much lower value �−

must be reached before these triangles can be rewired out of

the network again. This gap between �+ and �− at fixed C

has important implications for the triangle “conserving” null

model of �17�, as we discuss later.

C. Clique adjacency plots and clustering cores

Up to now we have not given any plausible arguments for

why clustering increases via a sequence of jumps rather than

in a single jump or in a continuous manner. One might ex-

pect a priori that each jump is related to the breakup of a

connected component into disconnected subgraphs, just as

the phase transition in regular graphs is associated with such

a breakup. Indeed this type of percolation phase transition

was seen by Volz �24� in different networks as a function of

a tunable clustering. However, by counting the number of

disconnected components for the first few jumps we ruled

out this scenario as a generic cause for the jumps, although

we do expect the networks to break up when � becomes very

large.

Instead, we now argue that each jump is associated with

the sudden formation of a highly connected cluster of higher

than average degree nodes, where each link participates in

many triangles. The first jump encountered on ramping up �
occurs when some of the strongest hubs link among them-

selves, forming a highly connected cluster. Subsequent

jumps indicate the formation of other clusters with high

intra—but low interconnections. Hence the clusters corre-

spond to communities according to a standard definition

�35,47�. What distinguishes this picture of modularity is that

it automatically leads to large assortativity: Since high-

degree nodes form the first cluster�s�, there is a strong ten-

dency for clusters to contain nodes with similar degrees. For

previous discussions of how clustering of nodes depends on

their degree, see e.g., �36,48,49��. The BRM demonstrates

how a bias for transitive relations or triangles can give rise to

community structure de novo, whereas in other models, com-

munity structure must be put in by hand �2,50�.
We refer to the clusters of tightly connected nodes created

by the BRM as cluster cores. To visualize them, we use q

-clique adjacency plots �qCAPs�. A q-clique adjacency plot

is based on an integer-valued N�N matrix Tij
q called the

q-clique adjacency matrix. When no link exists between
nodes i and j, Tij

q =0. Otherwise, the matrix element is equal
to the number of q-cliques in which the link between i and j

participates. For example, if q=3, Tij
q=3 is nonzero only when

i and j are connected. It counts the number of common
neighbors. Hence, Tij

q=3=mij where mij is the edge multiplic-
ity in �25,36�. However, instead of looking at coarse grained
quantities, which lump together all node pairs with degree k
and k� sharing an edge, we examine microscopically each
individual link. Tij

q=3 can be considered a proximity measure
for nodes: linked nodes with many common neighbors are
likely to belong to the same community. Similar proximity
measures between nodes which depend on the similarity of
their neighborhoods have been used in �50–52�. To visualize
Tij, we first rank the nodes and then plot for each pair of
ranked nodes a pixel with corresponding color or gray scale
indicating the value of Tij

q . Possible ranking schemes are by
degree, by the number of q-cliques attached to the node, or
by achieving the simplest looking block-diagonalized
q-clique adjacency plot.

Examples for the Yeast degree sequence are given in Fig.

8. The four rows, descending from the top, show the 3CAPs

for typical members of the BRM ensemble before the first

jump and after the first, second, and third jumps. The plots in

the left column rank nodes according to their degree. The

plots on the right show the same matrices after “diagonaliza-

tion,” with nodes forming the first cluster placed in the top

ranks, followed by the nodes forming the second cluster, and

then nodes forming the third cluster. This diagonalization can

be performed using a community detection algorithm �35�,
followed by some heuristics to order nodes within each com-

munity so that the centers of the blocks have the highest

values of Tij
q . The community detection algorithm occasion-

ally includes a few nodes with low degree in the cluster core

community; these nodes are not shown here. But the relevant

parts of the 3CAPs are shown: nodes with lower ranks do not

play any substantial role except for very large values of �.

We notice several features:

�i� Not all high-degree nodes participate in the first cluster

cores. Obviously, the selection of participating nodes is to

some degree random. When sufficiently many links are es-

tablished the cores freeze and cannot be changed easily. This

agrees with our previous observation that the positions of the

jumps change unsystematically with details like the random

number sequence or the speed with which � is ramped.

�ii� Cluster cores that have been formed once are not

modified when � is further increased. Again this indicates

that existing cores are essentially frozen.

�iii� Cluster cores corresponding to different jumps do not

overlap.

All three points are in perfect agreement with our previ-

ous finding that hysteresis effects are strong and that once

these structure appear, they are preserved when � is in-

creased further.

From other examples �and from later jumps for the same

Yeast BRM� we know that the last two items in the list are

not strictly correct in general, although changes of cores and

overlap with previous cores do not occur often. Thus the

results in Fig. 8 are too extreme to be typical. When a cluster

core is formed, most of the links connected to these nodes

FOSTER et al. PHYSICAL REVIEW E 81, 046115 �2010�

046115-8



are used to connect to other members of the cluster core, and

the few links left over do not have a substantial effect on the

further evolution of the core.

We find that as �− decreases, the clustering cores persist

well below the value of �+ at which they were created �not

shown here�. This provides further evidence that once a link

participates in a large number of triangles, it is stable and

unlikely to be removed.

These adjacency plots are also useful for analyzing em-

pirical networks, independent of any rewiring procedure, to

help visualize community structure. While nodes in different

communities often are linked, these links between communi-

ties usually take part in fewer triangles than links within

communities. Thus simply replacing the standard adjacency

matrix by the three-clique adjacency matrix should help dis-

cover and highlight community structure �50–52�.

In the top left panel of Figs. 9 and 10 we show parts of the

3CAPs for the yeast protein-protein interaction and HEP net-

works respectively. In both cases, nodes are ranked by de-

gree. We see that the triangles tend to be formed between

strong hubs. But clustering in the real networks does not

strictly follow the node degree, in the sense that some of the

strongest hubs are not members of prominent clusters. This

shows that real networks often have features which are not

encoded in their degree sequence, and that a null model en-

tirely based on the latter will probably fail to reproduce these

features. We see also that links typically participate in many

triangles, if they participate in at least one. This is in contrast

to a recently proposed clustering model, which assumes that

each link can only participate in a single triangle �53�.
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FIG. 8. �Color online� Relevant parts of three-clique, or triangle

adjacency plots �3CAPs� for the Yeast network. The color of each

point indicates the number of triangles in which the link partici-

pates. Each pair of plots shows �from top to bottom� the 3CAP for

a typical member of the ensemble shortly before the first jump seen

in Fig. 5, shortly after it, shortly after the second jump, and shortly

after the third jump. The plots on the left hand side show the 3CAP

with the nodes ranked in order of their respective degree. In the

“diagonalized” plots we rearranged the ranking so that nodes which

participate in the three clusters formed by each jump are ranked

together, at the head of the list. To do this we use the community

detection algorithm of �35� �see text�. The rest of the nodes are

ranked by degree.
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FIG. 9. �Color online� Parts of 3CAPs for the real yeast protein-

protein interaction network of �46�, for a typical network of the

“triangle conserving” ensemble with no annealing, for a network

obtained after an “annealing” period with �=0 and a subsequent

quench with ��0 using “triangle conserving” rewirings �17�,
and for an ensemble obtained by 500 such annealing/quenching

alternations.
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FIG. 10. �Color online� Analogous to Fig. 9 using the high-

energy physics collaboration network instead �45�.
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D. Triangle conserving null models

In the previous subsection we looked at the case where
the bias is “unidirectional.” In contrast, Milo et al. �17� con-
sidered the case where the bias tends to increase the number
of triangles when it is below a target number n�,0, but pushes
it down when it is above �54�. In this way neither jumps nor
any hysteresis is encountered. But that does not mean that
the method is not plagued by the same underlying problem–
extremely sluggish dynamics and broken ergodicity on real-
istic time scales.

In the most straightforward implementation of triangle
conserving rewiring with the Hamiltonian HMilo �17�, one
first estimates via preliminary runs a value of � which is
sufficiently large so that n� fluctuates around n�,0. Then one
starts with the original network and rewires it using this �,
without first “annealing” the network at �=0. The effect of
this is seen in the top right panels of Figs. 9 and 10. In both
cases, the three-CAPs shown were obtained after more than
109 attempted swaps. At �=0, this number is more than
enough to equilibrate the ensemble. For the large values of �
needed ��=1.5 for Yeast, and �=2.4 for HEP�, some
changes to the initial configurations are seen but the original
structures remain intact. This is particularly true for the

strongest clusters existing in the real networks. Triangles not

taking part in these clusters change more rapidly, but are also

less important.

Thus we demonstrate a pitfall inherent in triangle con-

serving rewiring: when the bias is strong enough to keep the

number of triangles in the network around the desired target

number, the bias is also so large that links within the cluster

cores are hardly ever randomized.

As a way out of this dilemma, we can alternate epochs of

triangle conserving swaps with “annealing periods” where

�=0. This guarantees that memory is wiped out during each

annealing period �see the lower left panels in Figs. 9 and 10�,
and each “quenching epoch” contributes one independent

configuration to the ensemble. After many such cycles we

can obtain an ensemble, which looks more evenly

sampled—as indicated in the lower right panels in Figs. 9

and 10. However, even then we cannot be sure that it accu-

rately represents the equilibrium ensemble for the Hamil-

tonian HMilo. Apart from the last caveat, the method would

presumably be too slow for practical applications where high

accuracy and precise variances of ensemble observables are

needed, since one needs one entire cycle per data point. But

it can be useful when it is sufficient to estimate fluctuations

roughly, and when high precision is not an issue. To illustrate

this, Fig. 11 shows results for the HEP network where 200

anneal/quench cycles were made for two different values of

� ��=2.3 and �=2.5�. In each cycle, the quenching epoch

terminated when the number of triangles reached the value of

the real network, and the values of r and of the number of

four-cliques were recorded. Figure 11 shows that these val-

ues scatter considerably, but are in any case far from the

values for the real network. Thus the ensemble is a poor

model for the real HEP network. Figure 11 also shows that r

and n4−clique depend slightly on � �as was expected�, but not

so much as to invalidate the above conclusion.

Reference �38� proposed “dK randomized ensembles” as

null models that progressively converge to the actual net-

work as d is increased. In the 3K ensemble, the number of

triangles and wedges for each triple of degrees k, k�, and k�

are fixed. As a result, in any configuration the number of

allowed link swaps is much smaller than in triangle conserv-

ing rewiring. Based on our results for the latter ensemble, we

would suggest that the time required to find any configura-

tions significantly different from the original one �if they

exist� are inaccessible with known algorithms. Hence, one

cannot be sure of their claim that the 3K ensembles repro-

duce all the local and global properties for most undirected

networks.

IV. CONCLUSION

In highly clustered networks—including most real world

networks–clustering is concentrated among the highest de-

gree nodes. The Strauss model correctly points to an impor-

tant feature: clustering is cooperative. Once many triangles

appear in a certain part of the network, they actuate the cre-

ation of more triangles in the region leading to a positive

feedback loop. Thus, clustering cannot be smoothly and

evenly introduced into a network; it is often driven by

densely interconnected, high-degree regions. In triangle bi-

ased methods these high-degree regions emerge suddenly

and thereafter prove resistant to subsequent randomization

by rewiring.

The biased rewiring model put forward in this paper

samples the ensemble of networks with an exponential

weight, similar to the Strauss model. The density of triangles

is controlled by a conjugate fugacity or triangle bias �. How-

ever, we impose a fixed degree sequence and thus avoid the

catastrophic increase of connectivity at the phase transition

as in the Strauss model. Yet there the first-order transitions

remain.

For regular networks, i.e., those where every node has the

same degree, there is a single phase transition. In the phase

with strong clustering �large fugacity�, the dominant configu-

rations are a collection of disjoint k-cliques for k�2. If the

degree sequence is inhomogeneous, the formation of cluster
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FIG. 11. �Color online� Values of the assortativity r and of the

number of four-cliques in the real high-energy physics network and

in 400 members of the triangle-conserving ensemble. The 400 real-

izations were obtained by 200 anneal/quench cycles with �=2.3

and 200 cycles with �=2.5, as described in the text.
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cores no longer happens at the same � for different parts of
the network. Thus the single phase transition is replaced by a
sequence of discrete, discontinuous jumps, which resemble
both first order transitions and Barkhausen jumps. As in the
original Barkhausen phenomenon, frozen randomness is cru-
cial for the multiplicity of jumps. There, each jump corre-
sponds to a flip of a spin cluster already defined by the
randomness—at least at zero temperature �33,34�. In the
present case, however, each jump corresponds to the creation
of a cluster whose detailed properties are not only deter-
mined by the quenched randomness �the degree sequence�,
but also depend on the “thermal” �nonquenched� noise.

As in any first-order phase transition, our model shows
strong hysteresis. Cluster cores, once formed, are extremely
stable and cannot be broken up easily. They form virtually
permanent communities where the intracommunity links far
outnumber the intercommunity ones. Indeed a standard com-
munity detection algorithm �35� detects the cluster cores to-
gether with other communities, which concentrate fewer tri-
angles together.

This hysteresis limits the usefulness of triangle biased or

triangle conserving rewiring as a null model. Even though

the phase transitions do not appear explicitly in the null

model of �17�, the underlying dynamics are the same. Due to

the very long time scales involved, Monte Carlo methods

cannot sample evenly from these ensembles, but remain lo-

calized near the starting configuration. Care should be taken

to demonstrate that results found using them are broadly con-

sistent across various sampling procedures. This problem

seems to us to be even more acute for the dK randomized

ensembles in �38�. In the 3K ensembles not only is the total

number of triangles conserved but the number of triangles

and wedges with any triple of degrees �k ,k� ,k�� is also fixed.

The spontaneous emergence of cluster cores in the BRM

suggests that triangle bias can give rise to community struc-

ture in networks, without the need to define communities a

priori–thanks to the cooperativity of triangle formation. To-

gether with jumps in the number of triangles, or the cluster-

ing coefficient, simultaneous jumps in many other network

properties appear at the same control parameter. Both assor-

tativity and modularity emerge as a consequence of the clus-

tering bias. In particular, we found jumps in the number of

k-cliques with k�3, in the assortativity, and in the modular-

ity. Hence, all these quantities serve as order parameters as-

sociated with phase transitions in the BRM. This immedi-

ately raises the question whether the model can be

generalized so that a different, independent fugacity is asso-

ciated to each order parameter. For assortativity, this was

proposed some time ago by Newman �12�. In the present

notation, biased rewiring models with and without a target

triangle number n�,0 and target assortativity r0 are given by

the Hamiltonians

HMilo�G;�,�� = ��n��G� − n�,0� + ��r�G� − r0� �16�

and

HBRM�G;�,�� = − �n��G� − �r�G� , �17�

respectively, where � is the conjugate fugacity associated to

the assortativity. It is an open question whether such a model

might lead to less extreme clustering and thus might be more

realistic. First simulations �55� indicate that driving assorta-

tivity leads to smooth increases in all other quantities, with-

out jumps. The reason seems to be that the basic mechanism

leading to increased assortativity—the replacement of exist-

ing links by links between similar nodes—is not cooperative,

and doesn’t lead to a positive feedback loop. But further

studies are needed to test this conjecture.

As Newman remarked in �53�, clustering in networks “has

proved difficult to model mathematically.” In that paper, he

introduced a model where each link can participate in one

triangle at most. In this way, the phase transitions seen in the

Strauss model and in the present model are avoided. How-

ever, in the real-world networks studied here we found that

the number of triangles in which a link participates is

broadly distributed, suggesting that the model �53� may not

be realistic for networks with significant clustering. Indeed,

for each graph, specifying for each link the number of tri-

angles �or more generally q-cliques� in which it participates

adds valuable information to the adjacency matrix �which

just specifies whether the link exists or not�. The resulting

“three-clique adjacency plots” revealed community structure

that would not have been easy to visualize otherwise. These

adjacency plots may turn out to be useful in many other

contexts. For instance, it would be interesting to analyze

other models for complex networks with significant cluster-

ing �3,21–25� and compare them to real-world networks us-

ing our adjacency plots. Indeed the quest for understanding

clustering in complex networks is not yet finished.
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