000999141 001__ 999141
000999141 005__ 20240116084314.0
000999141 0247_ $$2doi$$a10.1002/srin.202200836
000999141 0247_ $$2ISSN$$a1611-3683
000999141 0247_ $$2ISSN$$a0177-4832
000999141 0247_ $$2ISSN$$a1869-344X
000999141 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01191
000999141 0247_ $$2WOS$$aWOS:000943084800001
000999141 037__ $$aFZJ-2023-01191
000999141 082__ $$a660
000999141 1001_ $$0P:(DE-HGF)0$$aFehlemann, Niklas$$b0$$eCorresponding author
000999141 245__ $$aIdentification of martensite bands in dual phase steels – a deep learning object detection approach using Faster R‐CNN
000999141 260__ $$aWeinheim$$bWiley-VCH-Verl.$$c2023
000999141 3367_ $$2DRIVER$$aarticle
000999141 3367_ $$2DataCite$$aOutput Types/Journal article
000999141 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698911330_32702
000999141 3367_ $$2BibTeX$$aARTICLE
000999141 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000999141 3367_ $$00$$2EndNote$$aJournal Article
000999141 520__ $$aMartensite banding in dual phase steels is an important research topic in the field of materials design, since it is affecting the local damage properties of the material to a large extent. Therefore, it is necessary to quantify the amount of banding and the geometrical details of the bands in a specific microstructure, for example for simulative approaches. In this study, an object detection approach is used to separate martensite bands from the rest of the microstructure and a subsequent effort is made to transfer these results to statistical quantities for the generation of representative volume elements (RVE). For this, a convolutional neural network (Faster R-CNN) was trained on manually labeled SEM-images of DP800 steel. As exact geometric definitions of martensite bands in such two-dimensional images are difficult, the influence of different band definitions was investigated. The result of the training shows generally good prediction accuracy but is strongly dependent on the chosen band definition and the underlying human bias from the labeling process. A statistical analysis using cross-validation additionally shows that reliable results can already be achieved with only small datasets of around 50 to 100 training images due to the used transfer learning approach. This is an important outcome as it eliminates the need to generate an enormously large dataset which can only be obtained from very time consuming microscopy work and manual labeling of the images.
000999141 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000999141 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000999141 7001_ $$0P:(DE-HGF)0$$aAguilera, Ana Lia Suarez$$b1
000999141 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b2$$ufzj
000999141 7001_ $$0P:(DE-HGF)0$$aBexter, Felix$$b3
000999141 7001_ $$0P:(DE-HGF)0$$aNeite, Maximilian$$b4
000999141 7001_ $$0P:(DE-HGF)0$$aLenz, David$$b5
000999141 7001_ $$0P:(DE-HGF)0$$aKönemann, Markus$$b6
000999141 7001_ $$0P:(DE-Juel1)162365$$aMünstermann, Sebastian$$b7
000999141 773__ $$0PERI:(DE-600)2148555-0$$a10.1002/srin.202200836$$gp. srin.202200836$$n7$$p2200836$$tSteel research international$$v94$$x1611-3683$$y2023
000999141 8564_ $$uhttps://juser.fz-juelich.de/record/999141/files/steel%20research%20international%20-%202023%20-%20Fehlemann%20-%20Identification%20of%20Martensite%20Bands%20in%20Dual%E2%80%90Phase%20Steels%20A%20Deep%20Learning.pdf$$yOpenAccess
000999141 909CO $$ooai:juser.fz-juelich.de:999141$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000999141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b2$$kFZJ
000999141 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000999141 9141_ $$y2023
000999141 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-19
000999141 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000999141 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-19$$wger
000999141 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-19
000999141 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000999141 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
000999141 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSTEEL RES INT : 2022$$d2023-10-25
000999141 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
000999141 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25
000999141 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2023-10-25
000999141 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
000999141 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
000999141 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
000999141 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
000999141 920__ $$lyes
000999141 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000999141 980__ $$ajournal
000999141 980__ $$aVDB
000999141 980__ $$aUNRESTRICTED
000999141 980__ $$aI:(DE-Juel1)IAS-9-20201008
000999141 9801_ $$aFullTexts