000999174 001__ 999174
000999174 005__ 20230228121547.0
000999174 0247_ $$2doi$$a10.1103/PhysRevLett.129.117701
000999174 0247_ $$2ISSN$$a0031-9007
000999174 0247_ $$2ISSN$$a1079-7114
000999174 0247_ $$2ISSN$$a1092-0145
000999174 0247_ $$2Handle$$a2128/33904
000999174 0247_ $$2pmid$$a36154421
000999174 0247_ $$2WOS$$aWOS:000865935700013
000999174 037__ $$aFZJ-2023-01208
000999174 082__ $$a530
000999174 1001_ $$0P:(DE-HGF)0$$aŠimėnas, Mantas$$b0
000999174 245__ $$aNear-Surface Te + 125 Spins with Millisecond Coherence Lifetime
000999174 260__ $$aCollege Park, Md.$$bAPS$$c2022
000999174 3367_ $$2DRIVER$$aarticle
000999174 3367_ $$2DataCite$$aOutput Types/Journal article
000999174 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676533778_6239
000999174 3367_ $$2BibTeX$$aARTICLE
000999174 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000999174 3367_ $$00$$2EndNote$$aJournal Article
000999174 520__ $$aImpurity spins in crystal matrices are promising components in quantum technologies, particularly if they can maintain their spin properties when close to surfaces and material interfaces. Here, we investigate an attractive candidate for microwave-domain applications, the spins of group-VI 125Te+ donors implanted into natural Si at depths as shallow as 20 nm. We show that surface band bending can be used to ionize such near-surface Te to spin-active Te+ state, and that optical illumination can be used further to control the Te donor charge state. We examine spin activation yield, spin linewidth, and relaxation (T1) and coherence times (T2) and show how a zero-field 3.5 GHz “clock transition” extends spin coherence times to over 1 ms, which is about an order of magnitude longer than other near-surface spin systems.
000999174 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000999174 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000999174 7001_ $$0P:(DE-HGF)0$$aO’Sullivan, James$$b1
000999174 7001_ $$0P:(DE-HGF)0$$aKennedy, Oscar W.$$b2
000999174 7001_ $$0P:(DE-HGF)0$$aLin, Sen$$b3
000999174 7001_ $$0P:(DE-HGF)0$$aFearn, Sarah$$b4
000999174 7001_ $$0P:(DE-HGF)0$$aZollitsch, Christoph W.$$b5
000999174 7001_ $$0P:(DE-HGF)0$$aDold, Gavin$$b6
000999174 7001_ $$0P:(DE-Juel1)171406$$aSchmitt, Tobias$$b7$$ufzj
000999174 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b8
000999174 7001_ $$0P:(DE-HGF)0$$aLiu, Ren-Bao$$b9
000999174 7001_ $$0P:(DE-HGF)0$$aMorton, John J. L.$$b10$$eCorresponding author
000999174 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.129.117701$$gVol. 129, no. 11, p. 117701$$n11$$p117701$$tPhysical review letters$$v129$$x0031-9007$$y2022
000999174 8564_ $$uhttps://juser.fz-juelich.de/record/999174/files/PhysRevLett.129.117701.pdf$$yOpenAccess
000999174 909CO $$ooai:juser.fz-juelich.de:999174$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000999174 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171406$$aForschungszentrum Jülich$$b7$$kFZJ
000999174 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b8$$kFZJ
000999174 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000999174 9141_ $$y2022
000999174 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000999174 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000999174 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-02
000999174 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000999174 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000999174 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000999174 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000999174 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000999174 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000999174 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000999174 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-02-02
000999174 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2019$$d2021-02-02
000999174 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000999174 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2019$$d2021-02-02
000999174 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000999174 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000999174 920__ $$lyes
000999174 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000999174 980__ $$ajournal
000999174 980__ $$aVDB
000999174 980__ $$aUNRESTRICTED
000999174 980__ $$aI:(DE-Juel1)PGI-9-20110106
000999174 9801_ $$aFullTexts