001     999174
005     20230228121547.0
024 7 _ |a 10.1103/PhysRevLett.129.117701
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 2128/33904
|2 Handle
024 7 _ |a 36154421
|2 pmid
024 7 _ |a WOS:000865935700013
|2 WOS
037 _ _ |a FZJ-2023-01208
082 _ _ |a 530
100 1 _ |a Šimėnas, Mantas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Near-Surface Te + 125 Spins with Millisecond Coherence Lifetime
260 _ _ |a College Park, Md.
|c 2022
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1676533778_6239
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Impurity spins in crystal matrices are promising components in quantum technologies, particularly if they can maintain their spin properties when close to surfaces and material interfaces. Here, we investigate an attractive candidate for microwave-domain applications, the spins of group-VI 125Te+ donors implanted into natural Si at depths as shallow as 20 nm. We show that surface band bending can be used to ionize such near-surface Te to spin-active Te+ state, and that optical illumination can be used further to control the Te donor charge state. We examine spin activation yield, spin linewidth, and relaxation (T1) and coherence times (T2) and show how a zero-field 3.5 GHz “clock transition” extends spin coherence times to over 1 ms, which is about an order of magnitude longer than other near-surface spin systems.
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a O’Sullivan, James
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kennedy, Oscar W.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lin, Sen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fearn, Sarah
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zollitsch, Christoph W.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dold, Gavin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schmitt, Tobias
|0 P:(DE-Juel1)171406
|b 7
|u fzj
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 8
700 1 _ |a Liu, Ren-Bao
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Morton, John J. L.
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1103/PhysRevLett.129.117701
|g Vol. 129, no. 11, p. 117701
|0 PERI:(DE-600)1472655-5
|n 11
|p 117701
|t Physical review letters
|v 129
|y 2022
|x 0031-9007
856 4 _ |u https://juser.fz-juelich.de/record/999174/files/PhysRevLett.129.117701.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:999174
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171406
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)165984
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2019
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21