000999175 001__ 999175
000999175 005__ 20240705080647.0
000999175 0247_ $$2doi$$a10.3390/nano13020354
000999175 0247_ $$2Handle$$a2128/33910
000999175 0247_ $$2pmid$$a36678107
000999175 0247_ $$2WOS$$aWOS:000927528500001
000999175 037__ $$aFZJ-2023-01209
000999175 082__ $$a540
000999175 1001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b0$$eCorresponding author
000999175 245__ $$aSelective Area Epitaxy of Quasi-1-Dimensional Topological Nanostructures and Networks
000999175 260__ $$aBasel$$bMDPI$$c2023
000999175 3367_ $$2DRIVER$$aarticle
000999175 3367_ $$2DataCite$$aOutput Types/Journal article
000999175 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719991011_14554
000999175 3367_ $$2BibTeX$$aARTICLE
000999175 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000999175 3367_ $$00$$2EndNote$$aJournal Article
000999175 520__ $$aQuasi-one-dimensional (1D) topological insulators hold the potential of forming the basis of novel devices in spintronics and quantum computing. While exposure to ambient conditions and conventional fabrication processes are an obstacle to their technological integration, ultra-high vacuum lithography techniques, such as selective area epitaxy (SAE), provide all the necessary ingredients for their refinement into scalable device architectures. In this work, high-quality SAE of quasi-1D topological insulators on templated Si substrates is demonstrated. After identifying the narrow temperature window for selectivity, the flexibility and scalability of this approach is revealed. Compared to planar growth of macroscopic thin films, selectively grown regions are observed to experience enhanced growth rates in the nanostructured templates. Based on these results, a growth model is deduced, which relates device geometry to effective growth rates. After validating the model experimentally for various three-dimensional topological insulators (3D TIs), the crystal quality of selectively grown nanostructures is optimized by tuning the effective growth rates to 5 nm/h. The high quality of selectively grown nanostructures is confirmed through detailed structural characterization via atomically resolved scanning transmission electron microscopy (STEM).
000999175 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000999175 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000999175 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000999175 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b1$$ufzj
000999175 7001_ $$0P:(DE-Juel1)177677$$aValencia, Helen$$b2$$ufzj
000999175 7001_ $$0P:(DE-Juel1)171405$$aSchleenvoigt, Michael$$b3
000999175 7001_ $$0P:(DE-Juel1)177766$$aRingkamp, Christoph$$b4$$ufzj
000999175 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b5$$ufzj
000999175 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, Martina$$b6$$ufzj
000999175 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b7$$ufzj
000999175 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b8$$ufzj
000999175 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano13020354$$gVol. 13, no. 2, p. 354 -$$n2$$p354 -$$tNanomaterials$$v13$$x2079-4991$$y2023
000999175 8564_ $$uhttps://juser.fz-juelich.de/record/999175/files/nanomaterials-13-00354-v2.pdf$$yOpenAccess
000999175 8767_ $$d2023-03-09$$eAPC$$jZahlung erfolgt
000999175 909CO $$ooai:juser.fz-juelich.de:999175$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000999175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b0$$kFZJ
000999175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b1$$kFZJ
000999175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177677$$aForschungszentrum Jülich$$b2$$kFZJ
000999175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171405$$aForschungszentrum Jülich$$b3$$kFZJ
000999175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177766$$aForschungszentrum Jülich$$b4$$kFZJ
000999175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b5$$kFZJ
000999175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich$$b6$$kFZJ
000999175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b7$$kFZJ
000999175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b8$$kFZJ
000999175 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000999175 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000999175 9141_ $$y2023
000999175 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000999175 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000999175 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000999175 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000999175 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000999175 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000999175 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000999175 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
000999175 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000999175 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
000999175 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:01:18Z
000999175 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:01:18Z
000999175 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:01:18Z
000999175 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2022$$d2023-10-26
000999175 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000999175 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000999175 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000999175 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
000999175 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
000999175 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000999175 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000999175 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
000999175 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOMATERIALS-BASEL : 2022$$d2023-10-26
000999175 920__ $$lyes
000999175 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000999175 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000999175 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000999175 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x3
000999175 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x4
000999175 980__ $$ajournal
000999175 980__ $$aVDB
000999175 980__ $$aI:(DE-Juel1)PGI-9-20110106
000999175 980__ $$aI:(DE-Juel1)PGI-10-20170113
000999175 980__ $$aI:(DE-82)080009_20140620
000999175 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000999175 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000999175 980__ $$aAPC
000999175 980__ $$aUNRESTRICTED
000999175 9801_ $$aAPC
000999175 9801_ $$aFullTexts