000999176 001__ 999176
000999176 005__ 20231027114355.0
000999176 0247_ $$2doi$$a10.3390/nano13040723
000999176 0247_ $$2Handle$$a2128/33906
000999176 0247_ $$2pmid$$a36839091
000999176 0247_ $$2WOS$$aWOS:000940576300001
000999176 037__ $$aFZJ-2023-01210
000999176 082__ $$a540
000999176 1001_ $$0P:(DE-Juel1)178707$$aHeffels, Dennis$$b0$$eCorresponding author
000999176 245__ $$aRobust and Fragile Majorana Bound States in Proximitized Topological Insulator Nanoribbons
000999176 260__ $$aBasel$$bMDPI$$c2023
000999176 3367_ $$2DRIVER$$aarticle
000999176 3367_ $$2DataCite$$aOutput Types/Journal article
000999176 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676536642_5234
000999176 3367_ $$2BibTeX$$aARTICLE
000999176 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000999176 3367_ $$00$$2EndNote$$aJournal Article
000999176 520__ $$aTopological insulator (TI) nanoribbons with proximity-induced superconductivity are a promising platform for Majorana bound states (MBSs). In this work, we consider a detailed modeling approach for a TI nanoribbon in contact with a superconductor via its top surface, which induces a superconducting gap in its surface-state spectrum. The system displays a rich phase diagram with different numbers of end-localized MBSs as a function of chemical potential and magnetic flux piercing the cross section of the ribbon. These MBSs can be robust or fragile upon consideration of electrostatic disorder. We simulate a tunneling spectroscopy setup to probe the different topological phases of top-proximitized TI nanoribbons. Our simulation results indicate that a top-proximitized TI nanoribbon is ideally suited for realizing fully gapped topological superconductivity, in particular when the Fermi level is pinned near the Dirac point. In this regime, the setup yields a single pair of MBSs, well separated at opposite ends of the proximitized ribbon, which gives rise to a robust quantized zero-bias conductance peak.
000999176 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000999176 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000999176 7001_ $$0P:(DE-HGF)0$$aBurke, Declan$$b1
000999176 7001_ $$0P:(DE-HGF)0$$aConnolly, Malcolm R.$$b2
000999176 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b3
000999176 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b4
000999176 7001_ $$0P:(DE-Juel1)180184$$aMoors, Kristof$$b5
000999176 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano13040723$$gVol. 13, no. 4, p. 723 -$$n4$$p723 -$$tNanomaterials$$v13$$x2079-4991$$y2023
000999176 8564_ $$uhttps://juser.fz-juelich.de/record/999176/files/nanomaterials-13-00723.pdf$$yOpenAccess
000999176 8767_ $$d2023-03-09$$eAPC$$jZahlung erfolgt
000999176 909CO $$ooai:juser.fz-juelich.de:999176$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000999176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178707$$aForschungszentrum Jülich$$b0$$kFZJ
000999176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b3$$kFZJ
000999176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b4$$kFZJ
000999176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180184$$aForschungszentrum Jülich$$b5$$kFZJ
000999176 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000999176 9141_ $$y2023
000999176 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000999176 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000999176 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000999176 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000999176 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000999176 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000999176 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000999176 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
000999176 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000999176 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
000999176 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:01:18Z
000999176 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:01:18Z
000999176 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:01:18Z
000999176 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2022$$d2023-10-26
000999176 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000999176 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000999176 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000999176 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
000999176 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
000999176 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000999176 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000999176 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
000999176 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOMATERIALS-BASEL : 2022$$d2023-10-26
000999176 920__ $$lyes
000999176 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000999176 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000999176 9801_ $$aFullTexts
000999176 980__ $$ajournal
000999176 980__ $$aVDB
000999176 980__ $$aUNRESTRICTED
000999176 980__ $$aI:(DE-Juel1)PGI-9-20110106
000999176 980__ $$aI:(DE-82)080009_20140620
000999176 980__ $$aAPC