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Abstract
Internet-of-thing (IoT) is an assembly of devices that collect and share data with other devices and
communicate via the internet. This massive network of devices, generates and communicates data
and is the key to the value in IoT, allowing access to raw information, gaining insight, and making
an intelligent decisions. Today, there are billions of IoT devices such as sensors and actuators
deployed. Many of these applications are easy to connect, but those tucked away in hard-to-access
spots will need to harvest ambient energy. Therefore, the aim is to create devices that are self-report
in real-time. Efforts are underway to install a self-powered unit in IoT devices that can generate
sufficient power from environmental conditions such as light, vibration, and heat. In this review
paper, we discuss the recent progress made in materials and device development in power- and,
storage units, and power management relevant for IoT applications. This review paper will give a
comprehensive overview for new researchers entering the field of IoT and a collection of challenges
as well as perspectives for people already working in this field.
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1. Introduction

The internet of things (IoT) is a giant network that connects a huge number of physical objects—‘things’-
through the internet. Remote accessibility and automatization allow us to perform tasks efficiently and
repeatedly. IoT is considered one of the leading technologies, which is projected to increase and reach 50
billion devices by the year 2030 [1, 2]. Applications of IoT are primarily based on low-power consumable
devices, which are used in home appliances or automation [3], hospitals [1], and healthcare [4, 5] as well as
in numerous industrial processes [6]. Typically, IoT devices receive or generate data and then transmit it
wirelessly to other devices to perform any given task. It consists of mainly three parts: IoT units (wireless
sensor networks (WSNs), processors, actuators, etc), power units, and electronics.

Powering billions of devices remains an open technological challenge. At the same time, the installation
of billions of devices will require the miniaturization of IoT units, power units, and electronics. Therefore,
IoT-based industries face several technological challenges: (a) creating low-power electronics, including
wireless communications, sensors, and actuators, (b) producing reliable and maintenance-free autonomous
powering devices with a long life span, (c) developing low-cost fabrication technology that supports the
miniaturization of billions of IoT units, and (d) creating reliable and safe wireless communication methods
[7–10].

The current technological solution for powering IoT-based devices mainly relies on the battery industries
[11–15]. However, their lifetimes are generally much less than the expected lifetimes of the WSNs and hence,
replacement of batteries is required periodically to keep the devices operational. This creates extra expenses
and additional complications for remote sensors, and in some cases, it can even be impossible to replace
batteries. Moreover, batteries are expensive, bulky, and contain harmful chemicals. Although an effort is
currently taken to improve the energy storage capacity and therefore the lifetime of IoT devices, the
miniaturization of batteries remains a major technological challenge.

As an alternative, a self-powered unit can be installed in the IoT devices, which can harness sufficient
power from ambient energy sources [16]. Usually, a few energy conversion technologies are available to date
which can convert various sources of ambient energy into electricity. Some examples are a) thermoelectric
(TE) or pyroelectric generators, which can harness energy from ambiance waste heat, b) piezoelectric,
flexoelectric, and electromagnetic vibration energy devices which can convert mechanical (vibrational)
energy to electric voltage; c) photovoltaic devices, which can convert light into electricity etc. Depending on
the available ambient energy sources and conversion efficiencies, these energy-harvesting technologies can
power varieties of IoT devices, as shown in figure 1. The energy demand for low-power IoT devices typically
lies between several microwatts (µWs) to a few milliwatts (mWs) or between 10–1000 µW cm−2 in terms of
area-specific power density [17].

In this review paper, we report the current developments in the above mentioned important powering-
and storage units, and the electronics of IoT devices. The paper is divided into three sections: section 2
describes energy harvesting devices, which include energy harvesting only from ambient heat, vibration, and
light. Section 3 describes energy storage devices, which is mainly devoted to batteries. The use of micro-fuel
cells for on-demand powering of IoT devices is included in this section. Section 4 describes the electronic
power management for IoT devices.

It is noteworthy that other energy harvester- (wind- [17, 18], bio-waste- [19, 20], electromagnetic
radiation energy [21]), storage devices (supercapacitors [22–28]) and the economic competitiveness of these
devices for IoT applications [29–31] are not discussed here due to the large volume of this article. Above
referred articles might help readers to dive deeper into each topic.

2. Section-I: energy harvesting devices

In this section, we present five different types of harvesting devices, which include thermoelectricity,
piezoelectricity, flexo-electricity, electromagnetic vibration energy harvesters, and photovoltaics (PV).

2.1. Thermoelectricity for IoT applications
A few comprehensive review articles are published in the literature based on the µ-TE generators [32, 33],
wearable TE generators [34–36], and the use of TE devices for the IoT applications [29, 37]. Here, we have
updated the current developments on the materials and micro-devices, which are potential for IoT
applications.

TE devices are considered as one of the attractive solutions for powering IoT-based WSNs due to their
long operational lifetime, high reliability, and more importantly, their maintenance-free characteristics [38].
These devices are capable of converting electric voltage output directly from ambient heat sources using the
Seebeck effect, without involving any mechanical part on it. Typically, a thermoelectric generator (TEG)
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Figure 1. Example of energy conversion devices relevant for internet-of-thing applications. (a) Device architectures of
thermoelectric-, photovoltaic-, piezoelectric-, and radio frequency generators. (b) Energy spectrum of specific power
requirements of variable wireless sensor nodes and the energy supplying capabilities of different harvesting devices. Actual
conditions for the operating devices are listed in tables in their respective sections.

consists of both p- and n-type semiconductors (that is, p–n thermocouples) that are connected electrically in
a series but thermally in parallel [39]. The maximum achievable conversion efficiency of such TEG (ηTEG) is
given by equation (1) [40]:

ηTEG =
THot −TCold

THot

√
1+ZT− 1√

1+ZT+ TCold
THot

, (1)

The overall efficiency depends on (a) the Carnot efficiency (THot−TCold
THot

), and (b) the TE figure of merit (ZT).

The quality of a TE material is determined by the factor ZT (ZT= σS2

κ T; where σ, S, κ, and T are electrical
conductivity, Seebeck coefficient, thermal conductivity, and the mean temperature between the hot, and the
cold end, respectively). Therefore, it suggests that an appropriate design of the device for the propagation of
heat flux from the hot to the cold end [41], and the use of high ZT materials are essential to achieve
high-energy conversion efficiency. However, the output power is equally important as the efficiency for some
miniature devices (such as IoT-based WSNs, micro-temperature sensors, etc.) [42] because the amount of
heat flow from the hot to the cold reservoir in such devices is very small [43]. Depending on the ambient
temperature sources and the materials used, TEGs are capable of supplying power to those WSNs in a
spectrum that lies between 10 and 1000 µW cm−2 as shown in figure 1(b) (see also figures 18–20 in [37]).
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2.1.1. Materials
Implementation of both p- and n-type semiconducting materials with high ZT is necessary to achieve
maximum conversion efficiency in a TEG. Obtaining materials with high ZT is challenging because (a) the
electronic conductivity and the electronic part of the thermal conductivities are interrelated to each other
through the density of charge carriers according to Wiedemann–Franz law [44], and (b) in a band-gap
material, the electrical conductivity and the Seebeck coefficients behave oppositely as a function of the
density of charge carriers [45]. Hence, optimization of the density of charge carriers and the minimization of
the lattice part of the thermal conductivity is required, independently [44, 46]. As shown in figure 2, the
library of TE materials shows many families of compounds with 0.5⩽ ZT < 3 [47]. Examples include
Skutterudites [48], half-Heusler [49, 50] clathrates [51], zintal-phase [52–54], silicates [55],
silicon-germanium [56], heavy metal-based chalcogenides [57, 58], transition-metal-based oxides [59–61]
etc. Recently, polycrystalline SnSe-based chalcogenides exhibit ZT slightly above 3 (i.e. 2< ZTmax < 3.2)
[62–64] but only at higher temperatures (∼800–1000 K). Therefore, their use for near room-temperature
applications remains unattainable. Additionally, not all of these materials have been implemented in devices
and therefore, additional challenges associated with electrical contact resistance [65] and thermal contact
resistances [66] are not known. Recently, half-Heusler-based thin films grown on silicon substrates show an
estimated ZTmax ≈ 6 near 75 ◦C [67]). This value is extremely high due to the fact that the figure of merit
was calculated by combining power factor measured in the in-plane direction together with the thermal
conductivity measured in the out-of-plane direction. Nonetheless, although this value should be taken with
caution, it is interesting to point out that films were deposited on silicon substrates. n-type organic TE
materials also exhibit potential figure-of-merit (FOM) (ZT > 0.3 at 120 ◦C [68]), which can be used to
convert energy from waste heat of a human body (i.e. in wearable devices).

2.1.2. Devices
Appropriate design of the device architecture allows for improving the device performance by reducing
electrical- and thermal contact resistance [69]. On the other hand, technologies that allow a high-density
integration of thermocouples can generate sufficient power output even by using a low ZT material (such as
silicon) [42]. As the power output from a TEG device is more relevant for IoT-based applications [42], our
discussion includes the progress on the overall power output but not the overall efficiency. The power output
of a TEG is proportional to the cross-section area of the device (A) and the square of the applied temperature
gradient ((∆T)2). Usually, two parameters are used in the literature to quantify the power output capacity of
TEGs; area-specific power density (i.e. PA = Pmax/A) and specific power generation capacity
(ΓP = Pmax/[A.(∆T)2]).

A list of commercial TEGs and their performance can be found in [29, 37]. The power output of some
commercial TEGs can be as high as 0.69 W cm−2, where the temperature at the hot end and the footprint
area were 500 ◦C and 5.6× 5.6 cm2, respectively [29]. This indicates that commercial TEGs can power a
long-range of IoT-based sensors [37]. However, the footprint area of IoT-based devices shrinks continuously
(<1 cm3) [37, 70] and so, more attention is paid to the miniaturization of TEGs [43, 69]. In this sense, the
development of cost-effective micro-devices (µ-TEGs) is becoming significantly important.

Depending on the propagation of heat from the hot to the cold reservoir, µ-TEGs devices can have three
different architectures; planar, vertical, and hybrid [32, 33]. Thermocouples are suspended on a membrane
(or substrates) in a planar TEG device and heat propagates parallel to the substrates. The membranes used in
this design often show poor mechanical stability and a large parasitic heat transfer but remain technologically
important as are compatible with the silicon integrated circuit technology. Temperature gradients and the
power output in this architecture can be tuned by optimizing the length and the thickness of thermocouples.
In a vertical µ-TEG, thermocouples are placed vertically and so heat propagates vertically to the substrate. A
large density of thermocouples can be integrated with this device layout and high power output can be
achieved, which can further be tuned by controlling the width of the thermocouples [69]. Some of the
common features of the vertical and planar designs are merged in a hybrid configuration where heat flows
out-of-plane of the substrate but current flow in-plane and therefore have some more flexibilities [71]. In
this layout, cavities are created in the substrate below the thermocouple pair to further suppress the heat flow
[29, 32, 71]. The performances of a long list of µ-TEGs with different device layouts and with different TE
materials can be found in [32] and some recent advancements are shown in table 1 in this article.

Incompatibility of exotic TE materials such as Bi2Te3, PbTe, SnSe, etc into silicon technology prevents
their applications in the area of IoT and microelectronics. Only a few silicon-based materials such as Si and
SiGe are compatible with silicon-based micro-fabrication techniques. As discussed in the materials section,
SiGe-based materials are one of the promising TE materials used in space missions [38], which work more
efficiently at nanoscales especially due to the reduced total thermal conductivity [56]. Recently, SiGe
nanowire-based µ-TEG fabricated by using micro-electro-mechanical system (MEMS) technology shows a
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Figure 2. State-of-the-art p- and n-type thermoelectric materials with a high thermoelectric figure of merit (ZT). (a)-temperature
dependence on the ZT of the best p-type materials reported to date.Materials with 0< ZT ⩽1- Zintl phase (Toberer et al [72])
half-Heusler (Yan et al [73]), half-heusler (Sekimoto et al [74]), Ca3Co4O9 ceramic (Nong et al [75]), NaxCoO2-crystal and
ceramic (Terasaki [59]), CsBi4Te6 (Chung et al [76]), p-Si0.7Ge0.3 (Sootsman et al [46]);materials with 0< ZT⩽2 Bi2Sr2Co2Ox,
(Terasaki [59]), BiCuSeO (Pei et al [77]), Nanocomposite-BiSbTe3 (Poudel et al [78]), BiSbTe3 (Kim et al [79]), Na:SnSe-single
crystal (Zhao et al [80]), SnS0.91Se0.09 (Wenke et al [81]), Skutterudiet (Sootsman et al [46]), half-heusler (Fu et al [82]).
Materials with 0< ZT⩽3 polycrystalline-SnSe (Zhou et al [64]), single-crystalline-SnSe (Zhao et al [83]), 1.5%Na-SnSe (Qin
et al [84]), PbTe-SrTe (Tan et al [58]), Na-PbTe-SrTe (Biswas et al [85]), AgSbTe2 (Roychowdhury et al [86]). (b)- temperature
dependence on the ZT of the state-of-the-art n-type materials.Materials with 0< ZT⩽1- n-Bi2Te3 (Zhao et al [87]), SiTe (Wang
et al [88]), Mg3Bi2 (Mao et al [89]), Half-Heusler, Y14Mn1-xAlxSb11, Sr(Ti,Nb)O3 and ZnO:Al (Terasaki [59]), TiS2 (Wan et al
[90]), Organic thermoelectric (Liu et al [68]);materials with 0< ZT⩽2- Zintl phase (Zhang et al [91]), Clathrates (Saramat
[92]), PbSe (Jiang et al [93]), Mg2Si0.3Sn0.7 (Liu et al [94]), nanocomposite-Bi2SeS2 (Jabar et al [95]), metal-nano+Bi2Te3 (Wang
et al [96]), Skutterudites (Shi et al [97]), Skutterudites (Rogl et al [48]), In4Se3-δ crystal (Rhyee et al [98]);materials with
0< ZT⩽3- half-heusler thin film (Hinterleitner et al [67]), Br:SnSe single crystal (Chang et al [99]), LAST-AgPb10SbTe12 (Hsu
et al [100]). Different colored regimes in the figures represent different ranges of temperatures.
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Table 1. Comparison of the electrical power output and footprint areas of commercial TEGs, micro-TEGs based on the Bi2Te3-Sb2Te3
family, organic TEGs, and micro-TEGs that are compatible with MEMS and CMOS technologies. PA = (Pmax/A); ΓA = [Pmax/(A.
(∆T)2)]. Pmax and A are the maximum power output and the footprint area of the device, respectively.

Materials Cross-section area Pmax/∆T Power density (PA) Γp (µWcm−2K−2) Source

Commercial TEGs
TGPR-22 W-7 V-
56 S

5.6× 5.6 cm2 21.7 W 0.69 W cm−2 — [29]

HZ-2 2.9× 2.9 cm2 2.25 W/200 K 0.267 W cm−2 6.69 [29, 106]
TGM-127-1,9-0,8 3.0× 3.0 cm2 5.1 W/170 K 0.57 W cm−2 19.61 [29, 107]
TG12-2.5 (II–VI
MARLOW)

3.0× 3.0 cm2 0.41 W/180 K 0.045 W cm−2 1.4 [108]

Heavy metal chalcogenides: µ-TEGs
Bi2Te3-Sb2Te3 0.5–25 cm2 2.8 mW — 83.8 [109]
Bi2Te3-Sb2Te3 0.325 cm2 2.99 mW/52.5 K 9.2 mW cm−2 3.3 [110]
Bi2Te3/Cu, Cu
annealed

1.04 cm2 2.34 mW 2.434 mW cm−2 1.63 [111]

CMOS-based fabrication technology: µ-TEGs
Si NWs/SOG 50× 50 (µm)2 29.3 µW/56 K — — [112]
Si — 0.41 — 0.48 [42]
Si NWs 5×5 mm2 (TEG) 1.5 nW/0.12 K — — [113]
Si NWs blades — –/5 K 12 µW cm−2 0.48 [103]
Poly-Si(SiGe)
quantum well-like
str.

60× 4 (µm)2 –/20 K — 0.251 [114]

Poly Si 3×3 mm2 — — 0.252 [115]
Si blades 48× 36 (µm)2 0.60 µW/33.9 K ∼35.0 mW cm−2 29.0 [69]
Si(0.97)Ge(0.03) 48× 36 (µm)2 0.38 µW/16.1 K ∼22.0 mW cm−2 84.0 [43]
Si(0.98)Ge(0.02) 48× 36 (µm)2 — — 78.0 [43]
Si(0.99)Ge(0.01) 48× 36 (µm)2 — — 52.0 [43]
Si(1.00)Ge(0.00) 48× 36 (µm)2 — — 25. [43]

MEMS-based fabrication technology: µ-TEGs
Si NWs 2.0 mm2(∗) 832.0 nW 41.6 µW cm−2 — [102]
SiGe NWs 2.0 mm2 900.0 nW 45.2 µW cm−2 — [102]
Si microbeam 2.0 mm2 690.0 nW 34.5 µW cm−2 — [102]
SiGe Nw 2.0 mm2 142.0 nW/14.3 K 7.1 µW cm−2 0.034 [116]
Silicon membrane 0.25 mm2 11.25 nW/5.5 K 4.5 µW cm−2 0.149 [101]

Polymer-based flexible TEGs
Organic:
poly[Cux(Cu-ett)]:
p-type+
poly[Nax(Ni-ett)]:
n-type

26.7 mm2 750.0 µW/82 K 2.8 µW cm−2 4.16× 10−4 [117

Organic-inorganic
hybrid

0.2 mm2 335.0 nW/20 K 1.68 W m−2 4.0× 10−4 [118]

Note: (∗)active device area.

high power density [101] (∼7.1 µW cm−2) and was further improved (to 45.5 µW cm−2) by integrating a
heat exchanger [102]. Similarly, power densities as high as 41.2 and 34.5 µW cm−2 were obtained by using
µ-TEGs based on Si nanowires and Si microbeams [102], respectively (see table 1 for comparison).
Therefore, these planar devices show full technological potential for powering low-power IoT-based WSNs].

On the other hand, specific power generation capacity (ΓP) as high as 29 µW cm−2 K−2 (estimated
PA = 0.034 W cm−2) has been achieved recently at room temperature in nanostructured silicon thermopiles
by using silicon complementary metal-oxide-semiconductor (CMOS) technology, in a vertical device
structure [69]. Using the same technology, a systematic increase in ΓP from 25 to 84 µWcm−2 K−2 at room
temperature was achieved in Si1-xGex (x = 0.0, 0.01, 0.02, and 0.03) blades as shown in table 1. These ΓPs are
comparable to the Bi-Te-based exotic µ-devices from the viewpoint of power output [103, 104]. This success
is credited to the ability of the cost-effective CMOS technology that offers (a) a high-density integration of
thermocouples, (b) low electrical and thermal contact resistances, and (c) the ability to tune electrical and
thermal properties by controlling doped levels, the width of the thermopiles, and by engineering packing
fraction [42, 69]. All these features make CMOS technology a more realistic technological solution for device
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fabrication for powering IoT-based SNWs from ambient waste heat. Further tests of µ-TEGs based on
silicon-NWs might provide interesting results as they are predicted to generate PA in the range of
∼mW cm−2 with CMOS technology using miniaturization and integration [105].

2.1.3. Outlook
Focus on the cost-effective fabrication processes such as CMOS, MEMS technology, which allow fabrication
of devices with small footprint area and high power output, is increasing. More attention must be paid to the
design of heat from the hot to the cold end propagation in the micro-TEGs, as the large temperature
gradients will result in larger power output. As the key compatible materials for such technologies are mainly
Si and SiGe, therefore, the discovery of more silicon compatible materials is also necessary. Beyond the need
to deploy novel technologies replacing the standard ones some factors must be considered that currently
hamper a larger utilization of thermal energy harvesters: (a) improvement in materials (b) circuits
consumption with extremely low power (c) TEG often requires additional power-conditioning electronics to
be integrated with the harvesters, and (d) the cost factor should be minimized. Finally, TEGs are perhaps the
best alternative when the use of other energy harvesting technologies is impractical.

2.2. Piezoelectric energy harvester
Piezoelectric energy harvesters (PEH) convert mechanical vibrations into electrical energy using
piezoelectric materials. PEH is a crucial technology for self-power sources of unattended electronics, WSN,
and biomedical and wearable devices. Detailed literature about PEH has been released in the last decade
[119–124]. Here, we focus on the fundamental working mechanisms of PEH, the key parameters of mainly
used piezoelectric materials, and the design principle, given by their technological potential in the IoT field.

PEH is based on the direct piezoelectric effect, where piezoelectric materials generate electrical energy
when under external stress. The effect is described by the constitutive equations [119]:

Di = εSijSj + dijσj , (2)

where vector D and E are the electrical displacements, dij is the piezoelectric constant, Sj and σj are the
mechanical strain and stress, εSij is dielectric constant under constant strain. For the converse piezoelectric
effect, an electrical stimulus is converted into strain in the materials. With a similar equation:

Sj = cEijσj + dijEi, (3)

where cEij is mechanical stiffness under a constant electrical field.
For an efficient PEH, piezoelectric materials require a large electromechanical coupling factor (k),

piezoelectric constant d. Notably, the k characterizes the mechanical–electrical energy conversion efficiency.
For the transversal and longitudinal effects, e.g. the 31- and 33-mode, it follows [122]:

k2ij =
Welectrical

Wmechanical
=

e2ij
εTij c

E
pq

=
e2ij

εSijc
E
pq + e2iq

, (4)

where Y is Young’s modulus, eij is the piezoelectric constant. εTij is dielectric constant under constant stress.
For ambient mechanical vibrations, the piezoelectric energy harvester generally operates at much lower
frequencies than the mechanical resonance of the materials. In such a case, the PEH operates in
off-resonance conditions and the piezoelectric element can thus be approximated as a parallel plate
capacitor, where the electric energy is given as U = 1/2CV2, or by the energy per unit volume [125]:

u=
1

2
(d× g)(F/A)2, (5)

where C is the capacitance, V is the output voltage, F is the applied force, g is the piezoelectric voltage
constant (=d/ε0εr), and A is the area. The product of d and g (d × g) is the so-called FOM. With a given area
and thickness under the same driving force, piezoelectric materials with a large FOM provide more power.

However, to maximize the mechanical harvesting, resonant devices are the choice. For maximum
harvested electrical power in resonant conditions with high efficiency (η), want piezoelectric with high k and
high mechanical quality factor Qm:

A=

(
1
2

)
k2

1−k2

1
Qm

+ 1
2

k2

1−k2

, (6)

where Qm = Fr/BW, characterizes the sharpness of the piezoelectric’s electromechanical response spectrum.
BW is the bandwidth, denoting the frequency span around the resonance frequency (Fr). A high Qm is
important for resonant devices to avoid losses to heat and problems with self-heating.
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Table 2. The piezoelectric and electromechanical properties of typical piezoelectric materials.

Material Material type k31/k33

d31/d33
(pC/N)

g31/g33
(10−3Vm/N) FOM (x10−12) Y (Gpa) Reference

PVDF Polymer 0.11/0.15–0.25 −23/33 −216/330 10.89 ∼3.0 [123, 139]
PMN-PT Single crystal 0.76/0.94 −1283/2365 −21.22/39.11 92.49 16.5 [139, 140]
PZN-PT Single crystal 0.50/0.90 −970/2000 −21.0/44 88.00 8.2 [141, 142]
PZT-5H Ceramic 0.39/0.75 −274/593 −9.11/19.7 11.68 55 [139, 143]
KNN Single crystal 0.646∗/0.827 −77/162 −32.6/68.5 11.10 — [144]
BTO Ceramic 24.4/53.9 −92.3/205 −5.8/12.3 2.52 — [145]

2.2.1. Materials
Piezoelectric materials for PEH can be both inorganic and organic. Among the inorganic materials,
ferroelectric materials are often the best choice as they have high FOM and their properties are tunable by
both composition and microstructure. Some high-performing materials are lead-based materials such as
PrZrxTi1-x (PZT), Pb(Mg1/3Nb2/3)O3 (PMN). However, lead is toxic and is restricted to be used due to
environmental concern. Among various lead-free ferroelectrics, BaTiO3 (BTO), KxNa1-xNbO3 (KNN), and
solid solution of BTO with relaxor (Na1/2Bi1/2)TiO3 (NBT) show promising piezoelectric properties and
attracting increasing interest in recent years.

In recent years, nanostructuring, doping, and defect chemistry are very effective strategies to boost the
properties and performances of the piezoelectric material [126–128]. For ferroelectric, for instance,
structuring of nano-domains can lead to superior properties with piezoelectric coefficients above
1000 pC N−1 [126]. Atomistic mechanisms causing such changes are not completely clarified and new tools
in materials combinatorial screening, design, and simulation can be of great relevance in the coming years
[129–131]. The role of interface and nanoscale also introduced new possible criteria for an extremely
miniaturized system that requires high energy density [132–134].

For organic materials, phase polyvinylidene fluoride (PVDF) is one of the most common choices due to
its overall performance. Polymeric materials are softer than ceramic piezoelectric (lower Y), and they have a
negative strain with the electric field. Many efforts have been spent in the last decade to fabricate hybrid
materials with synergic performances between mechanical flexibility, and easy processing of the polymers,
with high piezoelectric performances of inorganic materials [135, 136]. However, such an integration is not
always trivial as it requires novel methodologies and chemical methods to interface different materials
efficiently. Recent advances in the field of nano-generators, however, indicate that novel heterostructures and
carbon-metal oxide piezoelectric can achieve impressive results [137, 138]. Table 2, summaries such
parameters for typical piezoelectric materials. Compare with inorganic piezoelectrics, organic materials such
as PVDF has lower k and d values. However, the FOM value is comparable to PZT-based ceramics due to its
large g value. Remarkably, PMN-PT and PZN-PT single crystals show much higher FOM compared with
other materials.

2.2.2. Devices
Besides the selection of the material, the specific design of the PEH depends on its application requirement,
such as the dimension limits, the mechanical energy source, the operating frequency, etc. Typical applications
for WSN lay in the mW power generations [153]. However, the general trend is to reduce the power
consumption of the sensor and communication systems, and PEH is the nW power generation, i.e.
nano-generators, conveys a large variety of designs and solutions.

For the micro-power, extensive works have been carried out to improve the design of micrometric PEH
in MEMS. Typical structures for silicon-based MEMS use a cantilever configuration with unimorph,
bimorph, and a proof mass attached to the free end of the cantilever. The mass is used for tuning the
resonance in the low-frequency range (<kHz) [146]. To amply the effective piezoelectric strain of the
piezoelectric materials, the cymbal structure with metal end caps is designed. However, the resonance
frequency of this configuration is very high, and a high mechanical source is needed to activate the PEH with
this configuration [147]. Another approach is the multilayer design, which stacks piezoelectric layers
together to enhance the output [148]. In particular, Xu et al [149] designed a new structure, which combined
the cantilever and cymbal structures. This configure uses the bending motion of the cantilever to compress
the two cymbals to generate electrical energy. Therefore, the resonance frequency decreases effectively,
making it suitable for low-frequency applications.

In recent years, hybrid energy harvesters (HEH), merging piezoelectric harvesting with other mechanical
harvesting technologies, are attracting increasing research interest. An example of HEH combining
piezoelectric and electromagnetic energy harvesting approaches is designed by Li et al [150] The authors
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Table 3. Comparison of various piezoelectric energy harvesting devices. The main properties are characterized by the dimensions of the
devices, power (U), output voltage (V), loading resistance (R), and operating frequency ( f ).

Material Configuration Dimension U R V f Reference

PZT-5A
ceramics

Cantilever 1 mm3 375 µW 200–300 kΩ 69.8 V 120 Hz [146]

PMN-PT
single crystal

Cymbal ≈30×5 mm2 14 mW 74 kΩ 45.7 V 500 Hz [147]

Polypropylene
(IXPP)

Stacked or/and folded
IXPP Piezoelectret
films

20× 20 mm2 82 µW 93 MΩ — 400 Hz [148]

PMN-PT
single crystal

Cantilever+ Cymbal ≈35× 5× 8 mm3 3.7 mW 251 kΩ 38 V 102 Hz [149]

PZT
ceramics

Piezoelectriccantilever+
electromagnetic coil

≈60× 15× 40mm3 3.0 mW 170 kΩ/24 kΩa — 73 Hz [150]

PVDF Hybrid
cell/multilayered
planar structure

63.5 cm2 0.95 mW 140 MΩ — 4.4 Hz [151]

PZT
ceramics

Piezoelectric bimorphs 47× 20× 0.5 mm3 613 µW 20 kΩ 13 V 20 r min−1 [152]

a For piezoelectric and electromagnetic load, respectively.

found that enhancing the coupling between the piezoelectric and electromagnetic coupling not only
improves the power and power spectral density but also broadens the frequency range to capture random
vibrations. However, the electromagnetic system can interfere with electronics and is generally avoided in
IoT applications. Alternatively, Zi et al [151] designed a triboelectric-pyroelectric-piezoelectric hybrid cell
composed of a sliding mode (TENG) and a pyroelectric-piezoelectric nanogenerator for hybrid energy
harvesting. At a sliding frequency of 4.4 Hz, the TENG alone generates a power density of 0.15 Wm−2. Using
the mechanical energy and friction-induced heat on the TENG, the hybrid device gives rise to a power
density two times that generated by TENG alone. With a small load resistance of 1 kΩ, the energy efficiency
could reach up to 26.2% with the potential to be further improved with proper operations or power
management. Another promising application area of PEH is to capture the energy from fluid flow (e.g. wind,
tide, etc). For example, Yang et al [152] designed a rotational piezoelectric wind energy harvester using
impact-induced resonance. The optimal DC output power reaches 613 µW across the 20 kΩ resistors at a
rotation speed of 200 r min−1. This kind of PEH is suitable for environments that are lacking vibrational
energy but are rich in fluid flow (e.g. wind, water, etc). Table 3 summarizes the main properties of various
piezoelectric energy harvesting devices.

In the field of nano generations, a wide variety of sensors are based on nano-tube, graphene, etc. For
tribological energy, fluid flow, etc, many include biocompatible and integration on implantable and wearable
flexible electronics. Although the power of such devices is currently too low, more efficient generation and
reduced consumption of sensor and communication devices can be the next frontier for the IoT.

2.2.3. Summary and outlook
In summary, PEH are of particular interest as autonomous power sources. To further improve the overall
performance, future works can be carried out via three different approaches:

• Optimize the electromechanical properties of the piezoelectricmaterials. Except for k, d(e), other parameters
are also relevant, such as mechanical quality factor Q, dielectric loss; the development of PEH based on
lead-free piezoelectric materials, which is desirable for biomedical applications; the development of flexible
piezoelectric materials, etc;

• Use of non-toxic materials. The most used piezoelectric materials currently in use are lead-based. However,
new regulations in the act limit or even ban their use in future technologies. New materials with enhanced
properties are thus needed and demonstrated for IoT applications, especially for those devices that aremeant
to be spread in the environment or in contact with the human body.

• The use of nanostructured and materials discovery initiatives would allow to further improve the perform-
ance of piezoelectric materials, and expand their application field, e.g. in the high-temperature range, where
they are currently only a few compositions are in play.

• The design of PEH with novel configurations to tune the resonance frequencies for specific applications,
broaden the bandwidth, the energy conversion efficiency;

• Improve the matching circuit and impedances of the electrical devices to reduce the electrical energy loss
during transportation and storage.
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Figure 3. (a) Cantilever-type flexoelectric actuators. (b) Experimental setup for d eff
33 measurements led by flexoelectric effect in a

cantilever beam [165]. (c) Energy conversion efficiencies with and without flexoelectric effect depending on the film thickness

[164]. Reprinted from [164], Copyright (2018), with permission from Elsevier. (d) Thickness dependent d eff
33 for the configuration

shown in (b) with the values of piezoelectric devices. Here, the thickness is decreased while simultaneously keeping the ratio
between cantilever length and thickness fixed at 50 [165]. (c), (d) [165] John Wiley & Sons. Copyright © 2011 WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim.

2.3. Flexoelectricity for IoT applications
Piezoelectricity is traditionally used for converting kinetic energy into electricity in IoT devices., as the
devices shrink and the active materials for harvesting reach the nanoscale, electromechanical conversion due
to flexoelectricity can be comparable to or even more efficient than that from piezoelectricity. Flexoelectricity
manifests itself as an electromechanical coupling between a strain gradient (∂εkl/∂xj) and induced electrical
polarization (Pi):

Pi = µijkl
∂εkl
∂xj

, (7)

where µijkl denotes the flexoelectric coefficient [154, 155]. In analogy with piezoelectric energy conversion,
where strain causes a change in polarization and induces a current between two electrodes as an attempt to
screen the polarization, flexoelectric energy harvesters use strain gradients to induce polarization and
current. Since flexoelectricity is a universal phenomenon exhibited in all-dielectric materials, the range of
available materials for flexoelectric devices is much wider than that of piezoelectric devices, which is allowed
only in 21 symmetry point groups. Consequently, not only harmful lead-composite materials can be avoided,
but also extreme operating temperatures are possible due to the lack of Curie temperature [156].
Furthermore, flexoelectric devices do not need an elastic passive layer to be bent [157] (figures 3(a) and (b)),
and do not suffer from the hysteretic nature of the spontaneous polarization that can induce a dramatic
performance reduction and irreproducibility.

As shown in equation (7), flexoelectric polarization is directly proportional to the flexoelectric coefficient
and strain gradient. Since the strain gradient scales inversely with the dimension of the material, the
flexoelectric effect can dominate at the nanoscale where large values of the strain gradients up to
∼106–108 m−1 can be achieved [158]. In this range of high strain gradients, unusual flexoelectric
phenomena such as polarization enhancements [159, 160], flexoelectric field effects on electronic
conduction [161, 162], and enhanced electromechanics [163] have been reported. In the same way, the
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Figure 4. Flexoelectric coefficients of polymers, ceramics, and single crystals.

electromechanical properties of flexoelectric devices, such as energy conversion efficiency from mechanical
energy to electrical energy, are highly enhanced at the nanoscale [164] (figure 3(c)). In several studies on

flexoelectric cantilever devices, the effective piezoelectric coefficient (d eff
33 ) has been considered to characterize

the electromechanical properties of the flexoelectric cantilevers, which is defined as the generated
flexoelectric charge per unit area by an applied normal force. The expression is

d eff
33 =

6µ3311l2

Et3
, (8)

where µ3311 (=µ12 in a cubic symmetry, which is expressed in Voigt notation) is the transverse flexoelectric
coefficient, l is the cantilever length, t is the cantilever thickness, and E is Young’s modulus [165, 166]. Since

d eff
33 is inversely proportional to the cube of the cantilever thickness, the electromechanical performance is

significantly enhanced when the thickness decreases. The value of d eff
33 can be experimentally obtained by

measuring the induced current flowing between a bottom and top electrode to screen the polarization in a

vibrating flexoelectric cantilever [165] (figure 3(b)). Based on the measured d eff
33 values in a Ba0.65Sr0.35TiO3

cantilever, the electromechanical performance in a few nanometer thick cantilever is expected to exceed that
of piezoelectric ones by up to two orders of magnitude, as evident from figure 3(d) where the thickness is
decreased while keeping l/t = 50 fixed [165].

2.3.1. Materials

Since d eff
33 is directly proportional to µ3311/E, materials with a high flexoelectric coefficient or low Young’s

modulus are favorable for flexoelectric energy harvesting. Accordingly, soft polymers and oxides with high
flexoelectric coefficients are promising candidates for flexoelectric devices. Polymers such as polyethylene,
epoxy, and polyvinylidene typically have elastic moduli two orders of magnitude lower than ceramics, which

could induce considerable enhancement in d eff
33 [167, 168]. However, to date, the flexoelectric coefficients of

polymers (∼10−9–10−8 Cm−1) are in general 2–5 orders lower than those of ceramics (∼10−6–10−4 Cm−1)
[165, 167, 169–175] (figure 4), although the large flexoelectric coefficient of α- PVDF (∼10−5 Cm−1) was
reported, which is still controversial due to the discrepancy between the different authors with unclearness
[167, 176–178]. Consequently, the flexoelectric coefficient and elastic modulus compensate each other, so the

d eff
33 of polymers generally becomes smaller than for ceramics. Nonetheless, the stability of polymers under
large deformations is better due to their softness, leading to a longer lifetime. The advantage of ceramics is
the high flexoelectric coefficient, with for example µ3311 of paraelectric Ba0.67Sr0.33TiO3 reaching
∼10−4 Cm−1 at room temperature, which is at least four orders higher than polymers and single crystals
[175] (figure 4). In general, since the flexoelectric coefficient is proportional to the dielectric constant,
materials such as (Ba,Sr)TiO3, (Pb,Sr)TiO3, and Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have very large
flexoelectric coefficients near the ferroelectric-to-paraelectric phase transitions, which could be manipulated
for flexoelectric devices (figure 4) [154, 175, 178].

2.3.2. Devices
Experiments using various designs of flexoelectric devices including cantilevers have been successfully
executed as shown in figure 5 and table 4 [156, 157, 165, 179, 180]. In the ribbon-type PZT devices, the
piezoelectric effect is increased by 70% in the curved region, which seems to come from the flexoelectric
effect due to the strain gradient effect formed when the curved structure is stretched (figure 5(a)) [179].
Periodic stretching (8% strain) of the device consisting of ten PZT ribbons generates an electrical current of
∼40 pA by converting mechanical energy into electrical energy. In another device with a dome-shaped

ceramic wafer made of Ba0.6Sr0.4TiO3, a finite d
eff
33 exists above the Curie temperature due to the flexoelectric
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Figure 5. Flexoelectric devices. (a) PZT ribbons (upper) with a schematic (bottom) of the energy generation measurement by
stretching [179]. Reprinted with permission from [179] Copyright (2011) American Chemical Society. (b) Dome-shaped
Ba0.6Sr0.4TiO3 wafer [156]. Reprinted from [156], with the permission of AIP Publishing. (c) Schematic of d-cone formation
(bottom) in a PVDF foil [187]. Reprinted from[187], with the permission of AIP Publishing.

effect (figure 5(b)) [156, 181]. Using polymers, electrical energy can also be generated through
flexoelectricity by a so-called d-cone formation in the wrinkle of a PVDF foil for wearable electronics
(figure 5(c)) [180, 182].

Theoretical studies have also been performed to describe and optimize the electrical power analytically or
numerically for the various designs of flexoelectric devices. In the cantilever design, induced electrical power
is enhanced by 100% when both flexoelectricity and piezoelectricity are considered on nanometer scales
compared to piezoelectricity alone [183]. It also has been reported that the output power of a cantilever
depends on the residual surface effects such as surface elasticity, surface stress, and surface piezoelectricity
[184]. The flexoelectric devices can be improved by considering a three-layered cantilever resulting in an
energy conversion efficiency much larger than for single- or double-layered cantilever [185], or by attaching
heavier masses at the end of the cantilevers arranged in an array to broaden the bandwidth of the resonance
frequency [186]. It has also been investigated whether it is more convenient to connect the cantilevers in
series or in parallel, which led to the conclusion that the induced power is largest for an array of cantilevers
connected in series [186].

2.3.3. Outlook
Although the various experiments and theoretical analyses of flexoelectric devices have been studied, few
papers report on experimental nanoscale devices [157, 188]. Among the reported results, the
nanometer-thick SrTiO3 cantilever is one of the most promising electromechanical devices for nanoscale
flexoelectric energy harvesting [157]. In this device, not only the measured electromechanical performance is
comparable to those of piezoelectric materials, but also its flexoelectric coefficient is maintained on the
nanoscale with a similar value as in the bulk. This result is promising for making highly efficient flexoelectric
devices from the recently developed freestanding membranes and cantilevers using oxide materials with
thicknesses down to a single unit cell [157, 189]. In particular, a recent study reports an abnormally large
flexoelectric polarization in the few-nanometer-thick epitaxial film with an extreme strain gradient value of
∼107 m−1. This phenomenon is expected to originate from the interplay between piezoelectricity and
flexoelectricity in the highly curved film with the unusual Poisson’s ratio distribution along the film-normal
axis [190]. By combining nanofabrication technology with this polarization enhancement in the extreme
deformation range, 2D-like flexoelectric energy harvesters could be a promising route for efficient power
generators in IoT devices.

2.4. Electromagnetic vibration energy harvester for IoT applications
Almost all large-scale power generation today consists of turning mechanical energy into electrical energy
through electromagnetic radiation. It is also possible to utilize this phenomenon to harvest power for IoT
devices. In this case, the mechanical energy is usually provided as the vibration of the environment on which
the IoT devices are mounted. There are two approaches to harvesting vibrational energy, namely
piezoelectric, and electromagnetic energy harvester (EMEH). In this section, we consider the latter approach.
A few comparisons of these two types of technologies exist, but a single study on wearable devices finds that
the efficiency of piezoelectric generators is quite lower, as is their power density, compared to magnetic
harvesters [193].

The core principle of an EMEH is that ambient vibrations cause a permanent magnet to vibrate through
the coil, i.e. a time-varying magnetic flux density (φB) through the coil which results in an induced
electromotive force as ∈=−(dφB/dt).
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Table 5. Power output from typical electromagnetic vibrational energy harvesting devices.

EMEHMotion Category
Peak power density

(µW cm−3) References

1D Single coil single magnet 7229 [194]
Single coil multiple magnets 8015 [195]
Multiple coils single magnet 1710 [196]
Multiple coils multiple magnets 2800 [197]

2D Multiple colis multiple magnets 788 [198]

Figure 6. (a) Cross-section of a simple electromagnetic energy harvester consisting of a magnet that vibrates past a coil, caused by
ambient vibration, and (b) basic schematics of a monostable electromagnetic energy harvester. The central magnet is levitated by
the two fixed magnets at the end of the device.

2.4.1. Materials
To make EMEHs having as high power-density as possible, Neodymium Iron Boron or Samarium Cobalt
magnets (also known as NdFeB and SmCo magnets respectively) are the most powerful type of permanent
magnets commercially available today, with magnetic properties that are far exceed AlNiCo and ferrite
magnet materials. While NdFeB magnets have a high-magnetic remanence and much higher coercivity than
other permanent magnets, SmCo magnets rank similarly in strength, but they have much higher temperature
stability. Both types have used manufacturing EMEHs with different power densities for four categories of
one-dimensional harvesters and one category for two-dimensional motion as described in table 5.

2.4.2. Device
The simplest EMEH one can consider is a permanent magnet mounted on a spring and surrounded by a coil
[199], as illustrated in figure 6(a). When ambient vibrations cause the spring to oscillate, the permanent
magnet moves through the coil, causing a time-varying magnetic flux density and thus an induced
electromotive force.

However, such magnets-on-a-spring devices can be plagued by mechanical friction, and also the wear
and tear of the spring. Further, making these devices strong enough to act as harvesters for IoT devices would
likely be problematic. Instead, the focus on electromagnetic energy harvesting has been on utilizing a
configuration of permanent magnets that levitates a single permanent magnet with a spring-like restoring
force. Such a device typically consists of three coaxial cylindrical permanent magnets, facing each other with
polarities that make the middle magnet keep levitating, avoiding mechanical friction [196, 200, 201], as
shown in figure 6(b). However, stable magnetic levitation is not possible as per Earnshaw’s theorem, the
permanent magnet must be enclosed in a cube, to prevent the middle magnet from flipping. We here term
such configurations as mono-stable. When subjected to an ambient vibration the middle levitated magnet
moves through one or more coils where an electromotive force is induced.

A substantial number of such EMEH mono-stable harvesters have been realized and tested. These can
employ block or ring magnets, circular or rectangular containers, a different number of coil windings,
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guidance for the middle magnet with or without spacers, and the spring on the top and/or the bottom edges
to replace the fixed magnets [202]. These devices can also be classified according to e.g. their excitation and
robustness [203]. A good physical description of the mono-stable EMEH devices exists, as the force on the
levitated magnet can often be approximated with a spring-like force [201]. There is generally a very good
agreement between modeling and experimental data for these devices [203], e.g. a mean absolute percentage
error of 6% has been demonstrated [204]. Most current-state devices are in the centimeter range and
produce a voltage in the mV–V range and power in the mW range [202], although this depends on the exact
way that the device is operated as EMEH devices can have a quite complex phase space [205].

Besides the mono-stable EMEH design, several other designs have been considered. For example, in one
approach, the coil is considered as the moving part instead of the permanent magnet [206]. In this case, the
magnetic flux is enhanced due to a steel frame, but a couple of stoppers are needed at the edges of the
harvesters. Likewise, attaching a coil winding to a rod that is exposed to ambient vibrations and vibrating this
through a double concentric Halbach array magnetic structure can also be used to harvest power [207].
It is also possible to modify the one-directional movement of the free magnet in an EMEH to a
multi-dimensional EH by making the fixed magnet similar to a doughnut-shaped container [208] and such
devices have recently been shown to have a larger and more easily tunable harvesting bandwidth compared to
monostable EMEHs [209, 210]. Finally, permanent magnets and springs can also be combined [211, 212] to
specifically harvest power from very low-frequency vibrations.

Other electromagnetic harvesters: other electromagnetic energy harvesting designs than the levitated
magnet design and the variants of this discussed above are also possible. One example is a harvester with a
spring-less spherical permanent magnet with a non-uniform mass distribution, that generates a
roly-poly-like motion in response to external vibrations, which induces a current in a coil [213]. Other
designs use a joint about which the floating magnet in figure 6(b) rotates [214] or more chaotic movements
using the random movement of a soft composite in a magnetic field with vibrations [215]. Moreover.
Bi-stable prototypes have been also contemplated [216] so that moving restriction is attained in only one axis
of the 3D space. The moving magnets keep levitating due to the repulsive force interaction with a set of
permanent magnets around it. As a result, such EMEH can generate power from low frequencies and low g
applications. Complex three-dimensional stable harvesters have also been studied [217], consisting of a set of
lifting magnets, diamagnetic plates made of pyrolytic graphite, a floating magnet, and a couple of copper
coils. This is also suitable for low frequency and low g applications. Finally, a design where the moving
magnet does not depend on the repulsive force produced by a fixed magnet, but by a fluid has also been
presented [218]. This EMEH employs a spherical magnet that rotates while fluid flows through the harvester.

2.4.3. Outlook
To be useful as energy harvesters for IoT applications, harvesters must typically be small e.g. about 1 cm3 in
size. This is a challenge for EMEHs, as these contain permanent magnets which have to be manually handled
and positioned in the harvester and cannot be produced with e.g. lithography or other manufacturing
techniques. However, microfabricating the coil in an EMEH is not challenging, and examples exist of
harvesters where the common coil winding is replaced by a micro coil that can be fabricated on silicon or
printed circuit boards [219], an example of such type of harvester can be seen in [220], where the
micro-fabricated coil is placed on the bottom edge of the harvester. When the magnets are also miniaturized
so that a miniaturized-sized device is produced, a few micro-watts of power can be generated when vibrated
[221].

EMEHs have in the recent decade been shown to be able to produce a reasonable amount of power from
the ambient vibrations, with power densities up to 8 mW cm−3 [195, 202], which is enough to supply energy
to a sensor as it is detailed in the self-power monitoring system described in [210]. The technology is
advantageous compared to other harvesting technologies because there is no wear on the device, the
induction mechanism is simple and direct, and the device has low internal friction.

However, several issues must still be tackled with EMEH devices before these are fully ready to be
commercialized. Besides the issue with miniaturization discussed above, further optimization of the design
of the device, especially with a focus on multivariable performance optimization [198, 202] is necessary.
Finally, ensuring a broader frequency harvesting range is likely needed for EMEH to be truly adaptable to the
range of environments that IoT devices experience.

2.5. PV generators for IoT
PV convert light into electrical energy and is another promising way to power IoT devices [222–226]. IoT
technology focuses mainly on indoor usages, where the spectra and intensities of light sources are quite
different from the standard outdoor AM1.5G solar irradiation. In contrast to the AM1.5G solar spectrum,
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which includes a significant portion of intensity in the infrared region, indoor light sources from fluorescent
and light-emitting diodes (LEDs) have a spectrum with intensities primarily in the visible light range, from
350 to 700 nm, and with much weaker light intensities; the intensity from a∼500 lux white light-emitting
diode (WLED) is only roughly 0.15% of the AM1.5G 1 sun intensity [31, 227]. Consequently, conventional
PV based on e.g. crystalline silicon, which possess a narrow indirect band gap of 1.12 eV and being optimized
for outdoor use, do not perform well under indoor lightning due to a non-ideal match between the
absorption spectrum of the materials, and the illumination spectrum of the indoor light sources. This results
in significant thermalization losses, and from that too low photovoltages. This has recently driven research
towards the use of new thin-film PV technologies based on wider band gap semiconductors for IoT
applications.

The performance of a PV device is characterized by the power conversion efficiency (PCE), which is
defined as the fraction of the electrical output power to that of the incident light power [228]: PCE= JSCVOCFF

Pin
,

where JSC, VOC, FF, and Pin are the short-circuit current density, open-circuit voltage, fill factor, and input
light power, respectively. The numerator in equation (1) thus represents the electrical output power of the
solar cell. As noted above, both the light spectrum and intensities for indoor and outdoor (sunlight) light
sources are different, which is affecting the Pin parameter. Depending on the illuminance of the indoor light
source, an output power of 10–100 µWcm−2 can typically be reached by indoor PV devices [222], which also
means that a 10 cm2 indoor PV device is large enough to power most wireless protocols used within IoT [7].
Further improvement of this requires optimization of materials and device architectures towards utilization
under indoor light. Furthermore, such materials and architecture choices may affect not only efficiency but
also the lifespan of the PV devices. An example of such considerations is for organic PV (OPV); for outdoor
use, the PCE of OPV is slightly lacking behind that of silicon PV, which for indoor use is the opposite.

In terms of stability and lifespan, OPV still lacks behind silicon PV due to photo-degradation of organic
molecules when exposed to light, heat, water, and oxygen [229]. In fact, the stability topic of organic
photovoltaics (OPV) has been a large research field of its own for many years, also demonstrating the
complexity of this topic due to the presence of multiple possible degradation routes. It is well known that
photo-oxidation of organic molecules may take place under simultaneous exposure to oxygen and light
[230, 231], something that can be partially mitigated via antioxidant additives [232, 233] and different
encapsulation routes [234, 235]. The antioxidants are relevant as industrial processing always allows for
inclusion of small amounts of oxygen in the cell during fabrication (done in air), which even the best
encapsulant cannot protect against. Transport layer interface degradation is also well-known, in particular
for many new non-fullerene based organic solar cell systems [236, 237], for example due to photocatalytic
decomposition of these molecules at metal oxide interfaces. This has made studies on transport layer
interfaces very relevant for the OPV field [238]. For indoor PV, however, these effects are much less of an
issue due to the lack of harsh and alternating weather conditions, and in particular, the different light
spectrum and intensity at indoor conditions, i.e. low light conditions and lack of UV component. Indeed, the
photo-oxidation of OPV molecules is well-known to be wavelength dependent, and much more effective
under UV light [239]. This leads to much more stable OPV devices at indoor conditions, which opens up for
new routes for some emerging PV technologies within IoT applications.

2.5.1. Materials
The theoretical efficiency limit of a PV cell under a given incident illumination spectrum and intensity has
been calculated for indoor light sources. For a single-junction solar cell with an optimum band gap lying
between 1.82 and 1.96 eV, a theoretical PCE of higher than 50% can be reached [240], compared to the PCE
limit of∼33% under AM1.5 G solar irradiation using a semiconductor with a band gap of 1.34 eV [241]. The
effect of the semiconductor band gap on the PCE can be seen when comparing crystalline and amorphous Si
[242]. While crystalline Si solar cells only deliver a PCE of<10% under low-lux LED illumination, due to the
low band gap of 1.12 eV, PV based on amorphous Si with a much wider band gap of∼2 eV have
demonstrated PCEs of>15% [242, 243]. Similarly, materials with band gaps that are normally not ideal for
outdoor PVs can perform well under indoor lightning. For indoor OPV (1650 lux illumination) based on the
polymer donor PM6 and the small molecule NFA Y6-O [244], an impressive PCE, of 30.9%, and an
open-circuit voltage, Voc, of 0.84 V has been recorded, mainly given by the strong light absorption between
400 and 800 nm for this material system. For indoor perovskite solar cells (iPsc), a PCE of 40% has been
recently achieved for (FAPbI3)0.92(MAPbBr3)0.08 cells under 824 lux illumination [245]. Although many
metal oxides are too wide band gap materials (above 3 eV), some binary and ternary oxide semiconductors
exhibit strong optical absorption in the visible light range. For example, Cu2O [246], α-Fe2O3 [247, 248],
Zn0.5Mn0.5O [249], and Zn1-xCdxO (x = 0.4–0.7) [250–253] all have band gaps in the range of 1.8–2.2 eV
and thus may also be promising materials as light absorbers for indoor PVs to power IoT devices.
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Table 6. Overview of recent works in perovskite solar cells (adapted from [222]).

Layer structure

Active-
area
(cm2)

Irradiance
(Lux)

Light
type

PCE
(%)

Voc
(V)

Jsc
(µA cm−2)

FF
(%) References

Glass/ITO/SnO2/(MA0.91FA0.09)
Pb(I0.094Br0.06)/HTM/Au

0.2 1000 LED
(5000K)

38.2 0.96 188 78.7 [259]

Au/poly(3-hexylthiophene)
(P3HT)/Poly[(9,9-
dioctyfluorenyl-2,7-diyl)-co-(4,4′-
(N-(4s butylphenol)
diphenylamine)(TFB)/CsPbI2
Br/SnO2/ITO/glass

0.1 1000 LED
(6000K)

27.16 0.94 122.0 0.77 [263]

Glass/ITO/SnO2/Cs0.05
(FA0.6MA0.4)0.95Pb(I0.6Br0.4)3/
PEAI/spiroOMeTAD/Au

0.2 1000 White
LED
(cool)

33.42 0.95 135 69.6 [264]

Glass/FTO/cTiO2/(FAPbI3)0.97
(MAPbBr3)0.03/spiroMeOTAD/Au

0.08 824.5 White
LED
(2700K)

40.1 1 152 79.5 [245]

FTO/SnO2/Cs0.05(FA0.85MA0.15)0.95
PB(I0.85Br0.15)3/SpiroOMeTAD/
M-oO3/Ag

— 1000 LED 37.9 0.96 156 79 [262]

Glass/FTO/SnO2/TiO2/MAPbI3/
spiro-MeOTAD/Au

0.2 1000 LED 29.83 0.81 154.4 66.3 [265]

Glass/FTO/TiO2/CsPbBrI2:(NH4)
C2O4/PTAA/MoO3/Ag

— 1000 FL 28.48 0.75 170 62 [266]

Glass/FTO/SnO2-PbO/MAPbI3/
spiro-OMeTAD/Au

0.24 285 — 34.2 — — — [267]

Glass/FTO/TiO2/CsPbBrI2
(NH4)C2O4/PTAA/MoO3/Ag

— 1000 FL 28 0.75 170 62 [266]

Flexible glass/ITO/SnO2/m-
TiO2/CH3NH3PbI3/Spiro-
OMETAD/Au

0.1 200 LED 20.6 0.82 30.7 72.2 [268]

ITO/SnO2/Pe/PEABr/Spiro/Au — 1000 LED 42.1 1.10 5810 77.8 [269]
Glass/FTO/SnO2/perovskite/
spiro-OMeTAD/MoO3/Ag

— 1062 LED 31.9 0.92 0.150 77.1 [270]

CsPbI2Br:Pb(Ac)2/PM6 — 1000 LED 33.7 1.15 118 81.8 [271]

2.5.2. Devices
OPV have gained a lot of popularity due to their desirable properties, such as light-weight, mechanical
flexibility, easy processability, and low-cost manufacturing, making them a cheaper alternative to the
conventional Si-based solar cells. Owing to the switch from fullerene to non-fullerene acceptors (NFAs), the
PCE of OPV has reached a record of 18.2% under 1 sun illumination (outdoor) [254], cutting it close to
state-of-the-art Silicon-based PV, and above 30% under 1650 lux illumination (indoor) [244]. In contrast to
fullerene acceptors, NFAs offer a larger degree of tunability in light absorption and also low voltage loss upon
free charge carrier generation, which has been the main driver for this improvement. Besides their low
environmental impact, OPVs are especially well-suited for indoor applications thanks to their large
absorption coefficients, low leakage currents, and the tunable energy levels of organic semiconductors
typically having band gap values well-suited for indoor lighting [255–257].

While the low light intensity generally causes lower open-circuit voltages for indoor applications, it also
modifies the effect of charge recombination on device performance. Under low-intensity light, OPV has a
higher susceptibility to leakage current and charge recombination caused by trap states, due to the overall
lower charge carrier density [244, 256], which is in contrast to bimolecular recombination effects that are
minor under these conditions [255]. These issues can be minimized by passivating defects and tuning the
energy levels of the charge transport layers, to achieve a more desirable energy level alignment and form
charge carrier selective contact layers, as well as by adjusting the energy levels of the organic active layer
materials to increase the Voc under low-intensity light [258]. Part of that is behind the success demonstrated
recently for NFA OPV cells.

The integration of an unconventionally used copolymer has enabled the PCE of iPsc to reach the highest
efficiency of Pb mixed halide iPsc of 38.2% [222, 259] under indoor 1000 lux. In tables 6 and 7, an overview
of the most recent works on indoor perovskite and organic solar cells are summarized.
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Table 7. Overview of recent works in organic solar cells.

Layer structure

Active
area
(cm2)

Irradiance
(Lux)

Light
type

PCE
(%)

Voc
(V)

Jsc
(µA cm−2)

FF
(%) References

Glass/ITO/PEDOT/PM6:Y6-
O/PDINO/Al

0.08 1650 LED
(3000K)

30.89 0.84 24.5 76 [244]

Glass/ITO/PEDOT:PSS/PM6:Y6-Y-
Th2/PDI-NO/Al

0.00477 1000 LED 22.72 0.701 32.01 74.48 [272]

Glass/ITO/PEDOT:PSS/PBDB-TF:IO-
4Cl/poly(PFN-Br)/Al

1 1000 LED
(2700K)

26.1 1.1 90.6 79.1 [273]

Glass/ITO/ZnO/PBDB-TSCl:IT-
4 F/MoOx/Ag

— 500 FL 21.53 0.63 60.44 76.29 [274]

PET/IMI/PEI/PC60BM(443 nm)/PEDOt:
PSS/Ag(Full Roll to Roll)

0.55 1000 LED 26 0.643 124 69.0 [275]

Glass/ITO/ZnO/D18:FCC-Cl/MoO3/Ag 0.07 2000 LED
(2600K)

30.1 0.975 245.4 80.1 [276]

Glass/ITO/ZnO/PM6:FCC-Cl/MoO3/Ag 0.07 2000 LED
(2600K)

28.5 0.914 244.1 81.2 [223]

ITO/ZnO/PFN-Br/PM6-BTP-BO-4Cl 0.04 1000 LED
(3000)

20.20 0.67 104.82 73 [264]

ITP/ZnO/Polyethylenimine
Ethoxylated/PBDB-T:M-ITIC-O-EH/
MoOx/Ag

0.1 1000 LED 21.6 678 163.9 69.8 [277]

PM6-BTP-BO-4CL — 1000 LED 20.2 0.67 115.6 0.73 [278]
6K-PDMS/PEDOT/PSS — 1500 LED 20.5 0.732 178.4 74.3 [279]
PBDB-TF:Y6-O — 1650 LED 30.8 0.84 245 76 [244]

As mentioned above, the illumination intensities play an important role in the mechanisms governing
the PCE of solar cells, such as current generation and recombination effects. Consequently, the PCE value is
influenced according to the subjected illumination. Therefore, for further enhancement of PCE, the
assessment of the traps associated with recombination mechanisms influencing the power efficiency must be
considered both indoor and outdoor, especially under low light intensities, where the effect of these traps is
prominent [222]. Attempting to mitigate the effects of trap-assisted recombination would require some
treatments, for instance, the passivation of interface defects or the implementation of some additive to
enhance their PCE [260]. Additionally, it was possible to fabricate a low-trap CsPbI2.7Br0.3 perovskite cell
that performed superbly and outperformed c-Si cells in low-light conditions under illumination from a 1000
lux fluorescent lamp and a WLED, the optimized device attained PCE values of 32.69 and 33.11% [261].
Besides, doping by strong electron acceptor of the perovskite demonstrated a viable method for effective
charge transport, opening the door to their use as IPVs. The ideal perovskite solar cell has achieved an
outstanding indoor PCE with PCE values of 37.9% under 1000 lux low light and 21.3% under one sun
illumination [262]. This emphasizes the importance of gauging the trap states experimentally in indoor PV
technology, in addition to a standard comparison of the solar cell performance between indoor light
sources.

2.5.3. Outlook
Compared to conventional outdoor solar cells, indoor PV is still in an early stage. The effects of lower light
intensity and hence reduced photo-generated carrier concentrations should be more carefully studied for
device optimizations [222]. Currently, a standard protocol for indoor light sources does not exist [226]. We
emphasize the importance of establishing such a standard for reporting efficiencies of indoor PVs, such that
a fair comparison can be made.

While OPVs and perovskites have demonstrated high PCE values of>30% under indoor light
illuminations, stability issues remain although they are less significant under indoor conditions. Therefore,
the commercialization of indoor OPV has also started recently. Furthermore, perovskite solar cell efficiencies
at low light illuminations have rendered them to be promising for indoor application compared to other
technologies. For both OPV and perovskite, the potential low cost is a further driver for commercialization.
At present time, efforts to implement these photovoltaic technologies in indoor applications, and more
specifically, to power IoT devices, are already yielding promising results. For example, iOPVs have
successfully been used to supply smart temperature and humidity sensors using indoor-like illuminations as
low as 300 lux [256].
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3. Section-II: energy storage and on-demand powering devices

In this section, we present recent developments on energy storage and on-demand power devices used for
IoT applications. The major focus of this section is devoted to battery technologies which represent the most
mature and most common solution for microscale powering devices (section 3.1), while we additionally
discuss micro-fuel-cell-based technologies as an alternative pathway for on-demand powering of IoT devices,
which may complement battery technologies in applications where fast charging/fueling processes are
needed.

3.1. Batteries for IoT applications
IoT devices with energy harvesting may work as independent devices without onboard energy storage [280].
Most of these micro-harvesters are based on intermittent energy sources, therefore, integration of
rechargeable energy storage in IoT devices is of importance for continuous, long-term, and independent
functionality, ensuring that the harvested energy does not go to waste. Combining energy harvesting and
storage allows utilization of very low-power energy sources while still enabling higher energy use at a given
time independently of the availability of the external energy source [280]. Integrating energy harvesting and
storage may lead to efficient utilization of the harvested energy, e.g. by combining PV with a lithium-ion
battery (LIB) [281, 282].

The requirements for IoT rechargeable batteries are very dependent on their size and use. For instance,
flexible batteries could be of interest for IoT wearables [283, 284], high- or low-temperature performance
would be a need for devices working in extreme environments and micro-batteries would be needed for very
small IoT sensor devices. Generally, the characteristics of IoT on-board rechargeable batteries are e.g. size,
reliability, low self-discharge, safety, and durability. The batteries should ideally be scalable with a
tailor-made design and format so that the batteries are made to fit the device instead of having to design the
device to fit a specific battery format.

All-solid-state thin-film lithium batteries (TFLBs) with outstanding safety and excellent integration
ability are the best candidate so far to fulfill this purpose [285]. Similar to LIBs, TFLBs consist of cathode,
electrolyte, anode, and collectors [286]. This section presents the state-of-the-art materials for cathode,
anode, and electrolyte with different advantages and challenges. Then, some full cell assembly is presented
with some commercial examples. TFLBs are highly customizable, which could support low-power IoT
devices with a power consumption of between 10–1000 µW cm−2. Higher energy density and longevity are
what is been pursued in the development of TFLBs. TFLBs can be fabricated by various vacuum-based and
wet-chemical methods. For physical vapor deposition (PVD) vacuum-based methods, there are magnetron
sputtering and pulsed laser deposition (PLD); atomic layer deposition (ALD) is a common technique in
terms of chemical vapor deposition vacuum-based methods. Sol-gel, spray pyrolysis, dip coating, and spin
coating are examples techniques of wet-chemical methods [287]. A schematic of the cross-section of a TFLB
is shown in figure 7. In this review, we are focusing on PVD methods, which have better integrations of
micro on-chip devices.

3.1.1. Materials
3.1.1.1. Electrolyte
Many materials have been developed as solid electrolytes (SEs) including inorganic, organic, and
inorganic/organic hybrid materials [289, 290]. For thin-film batteries produced by deposition methods, PLD,
sputtering or ALD, inorganic materials are the most relevant SEs. LiPON, Li3-xPO4-yNz, is a lithium
phosphate-derived material, which has been used extensively as SEs in thin-film LIBs despite its rather low
intrinsic lithium-ion conductivity [290], due to its good stability in air and against metallic lithium [291].
NASICON-type (structurally equivalent to Na1+xZr2P3−xSixO12) materials e.g. LiM2(PO4)3 (M=Zr, Ti, Hf,
Ge or Sn) showed good lithium-ion conductivities [289], and partially substituted materials, e.g.
Li1.3Al0.3Ti1.7(PO4)3 (LATP), show even higher ion conductivity. The major issue of NASICON electrolytes is
the interfacial instability both on cathode and anode [292]. Another perovskite-type material with a general
formula of ABO3 also has good Li-ion conductivity (10−4 S cm−1). Lithium lanthanum titanate (LLTO) is
one of the most promising perovskite electrolytes with a high ionic conductivity due to the vacancies in the A
sites. Similar to LATP, the electrolyte/electrode interface of LLTO is thermodynamically unstable, resulting in
increased resistance [293]. Garnet structure solid electrolyte (LLZO) is a promising material due to its high
ionic conductivity and good chemical stability against metallic lithium. This outstanding stability is
originated from the kinetic stabilization of the decomposition interphases [294]. However, it suffers from Li
metal dendrites growth, due to the grain boundary originating from its polycrystalline structure [295]. The
growth of this dendrite will eventually lead to a short-circuit, which hinders the use of Li metal as the anode
material. Employment of single-crystal or amorphous LLZO could block the Li dendrite growth [295]. The
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Figure 7. Schematic illustration of the cross-section of a TFLB [288].

ionic conductivity of thin-film LLZO is reported to be lower than that of bulk LLZO, due to the difficulty of
depositing Li-containing thin films with sufficient crystallinity and density. This difficult crystallization of
LLZO is caused by the volatilization of lithium at higher temperatures (both deposition and annealing) which
results in unexpected stoichiometry [296]. More importantly, the higher surface-to-volume ratio of thin-film
materials compared to bulk materials brings more severe Li loss [297]. Several sulfide-based SEs have been
discovered with very high lithium-ion conductivity, especially related to Li10GeP2S12 (LGPS). An example is
Li9.54Si1.74P1.44S11.7Cl0.3 (LSPS) [298], which has the highest room-temperature lithium ionic conductivity
published so far. However, sulfide-based SEs such as LGPS and LSPS is not stable both mechanically and
chemically against Li metal. They are also suffering from the toxic gas released when exposed to air [299].

3.1.1.2. Cathode
Current high-performance cathode materials used in thin-film micro-batteries are mostly lithium transition
metal oxide materials. Due to the wider electrochemical window of SEs, some high-voltage cathode materials
with promising specific capacities are readily available. LiCoO2 (LCO) has an exceptionally high volumetric
capacity (700 Wh l−1) and relatively high gravimetric capacity [300]. The charging cut-off voltage of LCO is
about 4.2 V, which gives a gravimetric capacity of about 140 mAh g−1. Recently, the cut-off voltage had been
pushed up to 4.55 V, which delivers a promising 190 mAh g−1 specific capacity [301]. High-voltage spinel
LiNi0.5Mn1.5O4 (LNMO) has been intensively studied [302, 303] and employed in TFLBs [302–305]. It can
reach a high voltage of up to 4.7 V [306]. The specific capacity of PLD deposited LNMO is significantly lower
than that of bulk LNMO, due to the difficulties of maintaining its ordered P4332 structure at 700 ◦C, which is
the normal temperature for PLD and sputtering [307]. Ni-rich layered oxide (NMC or NCA) is commercially
used in electric vehicles, which is a promising high-capacity material with reduced Co content. The synthesis
of thin-film Ni-rich material with good crystallinity is challenging. Only a few studies had reported Ni-rich
TFLBs [308]. Li-rich layer-structured oxide (LRO) materials could reach a capacity of 275 mAh g−1 with a
4.9 V cutoff voltage, which is higher compared to other cathode materials discussed here [309]. However, the
lithium loss during the deposition and annealing processes is still a challenge, especially at a higher
temperature [310, 311]. The stoichiometry of LRO is also difficult to control using vacuum-based deposition
methods [311]. Low initial Coulombic efficiency, and poor cycle and rate capability also hinder the
implementation of LRO [312].

3.1.1.3. Anode
Li4Ti5O12 (LTO) is a Li-insertion material that is widely employed as an anode material in TFLBs. The main
advantage of LTO is that the volume exchange during charge/discharge is minimal (<1%), so-called
zero-strain materials [313]. However, the low capacity (<175 mAh g−1) and high voltage (1.55 V vs Li) make
it less appealing compared with silicon (>3500 mAh g−1) and lithiummetal (3860 mAh g−1) [314–316]. The
high capacity and good lithography process compatibility of Si make it a promising candidate for on-chip
TFLBs. The main challenge of Si used as an anode material is the large volume expansion (>400%) [317].
The large volume change may cause a structural failure which leads to a short lifespan. To relieve the effects
of this drastic Si volume change, many 3D-structured silicon anodes have been designed [318, 319]. This
high-aspect ratio of 3D Si anode could also increase the areal power density of TFLBs. Li metal anode has the
highest gravimetric capacity among all anode materials. The utilization of Li metal anode could drastically
increase the gravimetric capacity of Li batteries. However, the lithium dendrite/void formation during the
discharge (plating)/charge (striping) process gives a critical current density which limits the high power
application of Li metal anode [320]. Dendrite formation is less crucial for TFLBs when employing LiPON or
amorphous LLZO as SEs, because these homogeneous defects free materials can completely prevent the
dendrite penetration [295, 320], for instance, a study using LiPON as SE, (LiNi0.5Mn1.5O4)LNMO as cathode
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Table 8. Examples of commercial TFLBs.

Manufacturer Model Composition
Capacity
(µAh) Size (mm)

Weight
(mg) Cycle life

Operating
temperatures

TDK Electronics
AG

CeraCharge
[326]

Li3V2(PO4)3/
Li1.3Al0.3Ti1.7
(PO4)3

100 4.4× 3.0× 1.1 40 — −40 to
+80 ◦C

Cymbet
Corporation

EnerChip
Bare Die
CBC050
[327]

LiCoO2/
LiPON/Li

50 5.7× 6.1× 0.2 — >5 000 at
10%
discharge

−40 to
+70 ◦C

Front Edge
Technology, Inc.

NanoEnergy
[328]

LiCoO2/
LiPON/Li

100–1,000 20× 25× (0.1–0.3) — <10% loss
after 1 000
cycles

−40 to
+100 ◦C

Infinite Power
Solutions

Thinergy
MEC225
[329]

LiCoO2/
LiPON/Li

130 12.7× 12.7× 0.17 125 10 000 −40 to
+85 ◦C

STMicroelectronics EnFilm
EFL700A39
[330]

LiCoO2/
LiPON/Li

700 25.7× 25.7× 0.22 200 <20% loss
after 4,000
cycles

−40 to
+60 ◦C

and Li metal as anode had achieved a cycle life of 10 000 with 90% capacity retention [305]. Anode-free
configuration can be seen as a special type of Li metal anode. As the name suggests, anode-free batteries do
not have an anode when it is been manufactured. Its Li metal anode forms during the charging process. This
could lower the manufacturing cost with improved safety [321]. An uneven lithium deposition (dendrite) is
the major challenge of anode-free batteries, because the contact between the SE and current collector may be
insufficient [322]. The large volume change of Si also plagues Li anode/anode-free TFLBs, as the entire active
layer is consumed and redeposited during a discharge/charge cycle.

3.1.2. Devices
Although the first secondary TFLB was developed more than three decades ago [323], only a few TFLBs are
commercially available. Table 8 lists some commercially available TFLBs. The capacities of these commercial
TFLBs are highly flexible, varying from tens to thousands µAh, which corresponds to the power
consumption of lower-power IoT devices with a typical energy demand of several microwatts (µWs) to a few
milliwatts (mWs). The composition of these TFLBs is mostly LiCoO2/LiPON/Li, which attributes to the high
energy density of Li metal/LiCoO2 and the chemical/mechanical stability of LiPON. Despite its low ionic
conductivity, LiPON is still the mainstream of TFLBs, showing the lack of development of other SE materials
(NASICON, perovskite, Garnet). Among these TFLBs, only the EnerChip Bare Die batteries from Cymbet
Corporation are designed for implementation in embedded systems (can be placed directly on a PCB), which
is manufactured on p-type silicon wafers. Others are implemented as surface-mounted devices in IoT
devices. One example of the powering IoT devices using thin film batteries is radio-frequency identification
(RFID) tags, which are used in shipping and inventory control. Some of the RFID tags include sensors that
can act as IoT nodes, and these tags are so thin that regular methods are not applicable in such case [324].

Some examples of reported TFLBs are also discussed here, as shown in table 9. Again, the electrolyte
material for those TFLBs is LiPON, and for anode material is Li metal. A recent study utilizing LLZO
electrolyte has shown an increased areal and gravimetric capacity compared to LiPON electrolyte [325]. The
capacity retention of a polycrystalline LLZO electrolyte TFLB is still far away from that of a TFLB with an
amorphous LiPON electrolyte.

3.1.3. Outlook
Although there are already some TFLBs commercially available, their specific energy and energy density is
orders of magnitude lower than conventional pouch/cylindrical cells. The energy density of the TFLBs listed
in table 8 ranges from 3.7 to 30 Wh kg−1 (10–86 Wh l−1). In comparison, an LG INR 18650 MJ1 cylindrical
cell (3500 mAh) has an energy density of 257 Wh kg−1 (710 Wh l−1)[338]. Micro-batteries have lower
energy density due to their lower active material/inactive material ratio. Nonetheless, the energy density of
TFLBs still needs to be increased to improve the overall performance of micro- harvest/storage devices. In
addition, the areal power capability of TFLBs is another limiting factor of their application to IoT devices.
One method of increasing the areal power capability is replacing LiPON electrolyte with other SEs with a
higher ionic conductivity, such as LLZO. This will need to solve the interfacial stability issue which could be
challenging for both TFLBs and regular-sized batteries. A recent study realized an ultrathin amorphous
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Table 9. Examples of reported TFLBs.

Year Composition

Gravimetric
capacity

(mAh g−1)

Areal
capcacity

(µAh cm−2)
Thickness
(µm) Voltage (V) Cycle life Deposition References

2000 LCO/LiPON/Li 137 — 15 3.0–4.2 <2% loss after
4,000 cycles

RF sputtering [331]

2014 LNMO/LiPON/Li 122 — 3 3.5–5.1 10% loss after
10 000 cycles

RF sputtering [305]

2018 LTO/LiPON/Li 162 2.7 — 1.0–2.0 <10% loss
after 200 cycles

Flame aerosol [332]

2019 LCO/LiPON/
Anode-free

110 5.7 ca. 9.7 2.0–4.2 <20% loss
after 100 cycles

RF sputtering
& aerosol

[333]

2020 LCO/Li-Nb-
O/LLZO
half-cell

142 20.9 0.5 3.0–4.25 >80% after
138 cycles

RF sputtering [325]

Figure 8. Illustration of TFLB architectures [305]. (a) ‘Traditional’ planar design. (b) 3D microbattery based on nanorods [334].
(c) 3D microbattery based on microchannels [335]. (4) 3D microbattery with interdigitated design [336]. Illustration and
microscopic images of TFLB architectures [337].

LLZO electrolyte, which has shown its ability to block the growth of Li dendrite like LiPON thin films [295].
Another approach to improving the capacity and rate capability is to fabricate TFLBs with 3D architectures.
Xia et al reported self-standing 3D cathodes for TFLBs with improved interface kinetics. They deposited 3D
LiMn2O4 (LMO) nanowall arrays and planar LMO thin films on conductive substrates using magnetron
sputtering. The 3D TFLB has shown a superior capacity and rate capability compared to the 2D TFLB with
discharge capacities of 119 and 83 mAh g−1 at 2 and 20 C rates, in contrast to 87 and 16 mAh g−1 of the 2D
TFLB. Figure 8 illustrated some TFLB designs with different 3D architectures.

3.2. Micro-fuel cells for on-demand powering of IoT devices
Batteries represent by far the most common energy storage and powering concept for IoT devices. However,
recent developments in micro-fabrication of electrochemical cells, such as fuel cells and electrolyzers, enable
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a new perspective on the integration of fuel cell technologies as powering device also in self-controlling or
remote applications, providing a compensation of power limits and intermittency of direct energy
harvesting. By definition, a fuel cell is neither an energy storage nor an energy harvesting device. However,
when integrated with a fuel reservoir/storage they hold the potential to work as an on-demand powering
device like a battery, and at the same time, may harvest excess energy to internally recover their fuel via
electrolysis (in reverse mode). Microscaled fuel cells and electrolyzers may hence complement batteries as a
sustainable on-demand powering device based on hydrogen technology. However, such device concepts
typically rely on an active supply of a chemical fuel, limiting their operation to niche applications. For
example, IoT applications that allow external access for recharging/refueling, but require fast charging times
(e.g. a hearing aid as medical device [339]), can benefit from micro fuel cell technologies. Hydrogen-based
fuel cells were also proposed as a competitive powering solution for different types of IoT systems [340] and
also explored in current European initiatives such as Harvestore [10, 341, 342].

Fuel cell devices are based on the idea of converting chemical energy into electrical output by forcing
complementary redox half-reactions and subsequent ion transport across a membrane. Electrochemical
energy conversion typically reflects a reaction of hydrogen and oxygen in the overall fuel cell reaction, leaving
behind water as the main reaction product. As a result, the ion transport required for fuel cell operation is
either proton transport or oxygen ion transport. Typical fuels are gaseous hydrogen or methane. The basic
operation of fuel cells is CO2-emission-free, making its technology sustainable and in principle green.
Miniaturization of fuel cells and particularly micro-scale solid oxide fuel cells may be considered a key
ingredient for their potential application in remote IoT devices. The ability to structure and build fuel cells
based on nano- to microscale thin films allows the compact design (∼1 cm3) of fuel cell devices that are
compatible with the need of IoT devices.

3.2.1. Materials
In general, the two main types of micro fuel cells for portable application are micro proton-exchange
membrane fuel cells (µPEM) and micro Solid oxide fuel cells (µSOFC). In µPEMs, the electrolyte is
commonly a proton-conducting polymeric membrane that allows the exchange of ions between the
oxidizing atmosphere at the cathode electrode and the gaseous fuel flowing through the anode electrode
[343]. The high protonic conductivity of polymeric membranes such as Nafion® allows PEM to operate
between ambient temperature and 90 ◦C, while their high humidity content prohibits the use above the
water boiling point. This operational range permits a facile integration of µPEM into standard Si
microfabrication techniques, as was demonstrated by different authors [344–347].

Another promising type of miniaturized power generator for portable application is micro Solid oxide
fuel cells (µSOFCs) [348, 349]. µSOFCs are characterized by the use of an oxygen ion conducting metal
oxide thin film as an electrolyte. While in traditional SOFC temperatures higher than 700 ◦C are needed to
overcome the ohmic losses derived by the poor ionic transport, nanometric electrolyte thin films can
drastically reduce the operating temperature of µSOFCs down to 400 ◦C, making them accessible to remote
applications where waste heat is available in large amounts [350]. Research and development efforts toward
nanoscale manipulation of ionic properties of materials principally allow realizing micro-scale membranes
and exchange electrodes, building a fully operational fuel cell on the micrometer lengths scale. In addition to
that, a vast variety of research is devoted to harvesting nanoscale materials science for improved fuel cell
performance, including tailored nano-composite materials [351–353] and heterogeneously layered
superlattices [354–358], or interface concepts with tailored ion conduction along and across interfaces
[357, 359–361]. The interested reader is referred to Garbayo et al [362], Wen et al [363] and Shin et al [364]
for more details on the strategies for improving the performances of electrode and electrolyte thin films for
µSOFC.

3.2.2. Devices
Table 10 shows a collection of characteristics, operating conditions, and performances reported in the
literature for different types of µSOFCs and µPEMs. For comparison, table 10 is also reported a selection of
results obtained for proton-conducting µSOFCs (PE- µSOFCs), in which the electrolyte is based on a
protonic conducting oxide thin film, and thin films based SOFC (TF-SOFC), where thin films components
are integrated with a bulk anode supported fuel cells. To better visualize the large spreading of µSOFC
performances, figure 9 shows the specific power density and total power reported in table 10. In the
figure 9(b), the performances of µSOFCs are also divided into the three main substrates used, i.e. (a)
Microfabricated Si substrates, (b) Porous Anodized Aluminum oxides (AAO) and (c) Porous Metallic
substrates. µSOFCs reach very high values of power densities that place them among the most efficient
micropower systems [348, 349]. Yet, the increase in power density is also observed to go along with a decrease
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Figure 9. (a) Maximum power and power density were obtained in literature for the different types of miniaturized fuel cells
reported in table 5. Thin Film SOFC (TF) is also included in the graph for comparison. The main types of µSOFCs, sorted by the
type of support used, are schematically shown in (b), along with cross-sectional images of the fuel cell.

in total power measured, meaning that such power densities are mainly achievable when using very small
active areas. This limitation is not due to poor performances of the µSOFC components, since TF-SOFC can
deliver power up to Watts, rather to the integration of dense thin films into porous substrates or
self-sustained membranes, which may result in gas leakages or short circuits when large active areas are used.
Another challenge that remains to be fully addressed is the integration of the fuel cell with the other auxiliary
components, such as fuel micro-reformer or post combustor unit, in a compact and miniaturized system
[365, 366].

3.2.3. Outlook
For rechargeable on-demand powering devices in IoT applications, fuel cell concepts may be preferred
against battery solutions, when fast charging times are required or their implementation is beneficial for
specific device functionality. Therefore, fuel cells have found their way into commercialization in small
devices, with a prime example of a methanol fuel-cell-powered hearing aid brought into the market by
Widex Inc.® (Widex Energy Cell®), which allows recharging of the methane-based PEM power supply within
20 s, rather than within hours for typical battery-power devices, and allowing 24 h of operation [367].

Finally, we notice that one of the main appealing features of micro fuel cells is the large energy density
deriving from the use of liquid or gaseous fuels (up to 1 Wh L−1), which is expected to allow a long off-grid
(off-refueling) operation [368]. Yet, the employment of fuels may also represent a limitation when powering
remote IoT devices, since the refilling of the fuel tank would be needed to ‘recharge’ the µSOFCs. As a
possible solution, a micro Solid Oxide Electrolysis Cell may be envisioned for promoting the reverse
electrochemical reaction and generating a fuel, such as a hydrogen from environmental humidity, when
excess energy from neighboring energy harvesting devices is available. In this way, a long-term operation in
remote IoT devices may be achieved. Such remote electrolyzer technology, however, is yet in the early stage of
research. Nevertheless, electrolyzer functionality is in principle accessible by running micro fuel cells in
‘reverse’ mode, to switch electrochemical conversion from fuel to electrical power in opposite direction and
thus generating fuel from water. A futuristic prospect for a remote IoT device may be equipped with such a
bifunctional electrochemical cell, capable of burning fuel when electrical power is required and producing
fuel when excess electrical energy is available. Systemically collecting water by a capillary or microfluidic
collector device may e.g. allow providing humidity in a small and controlled amount to the electrolyzer to
restore the fuel level of the devices.

At this stage, the application of fuel cells and electrolyzers may be considered a niche in current IoT
technologies. However, increasing degrees of miniaturization further enhanced power density, and increased
conversion efficiency can be expected from fundamental research in the coming years, making such
technologies a valuable member of the IoT toolbox.
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Table 10. Comparison among performances, operating conditions, and characteristics of a selection of micro fuel cells presented in the
literature. Notation: Si: Silicon supported, STS: Stainless steel, AAO: anodized aluminum oxide, YSZ: Yttria stabilized zirconia, LSCF: Sr
doped Lanthanum cobalt ferrite, LSC: Strontium doped lanthanum cobaltite, GDC: Gadolinium doped Ceria, SDC: Samarium doped
Ceria, BZY: Yttrium doped Barium Zirconate.

References Year Substrate

Composition
Cathode/
electrolyte/
anode

Op. T
(◦C)

Max.
Power
(mW)

Max.
power
density

(mW/cm2)

Active
area
(mm2)

Current
at power
peak

(A cm−2)

Voltage
at
current
peak
(V) Voc (V)

µSOFC An et al
[369]

2013 Si,
corrugated

Pt/YSZ-YDC/Pt 450 0.024 1300 0.002 4.1 0.32 1.05

Chao et al
[370]

2011 Si,
corrugated

Pt/YSZ/Pt 450 0.082 820 0.01 3 0.27 1.11

Su et al
[370]

2008 Si,
corrugated

Pt/YSZ/Pt 450 2.44 861 0.3 2.7 0.318 1.09

Tölke et al
[371]

2012 Foturan® Pt/YSZ/Pt 550 0.063 209 0.03 0.62 0.34 0.57

Muecke
et al [372]

2008 Foturan® Pt/YSZ/Pt 550 0.045 150 0.03 0.36 0.42 0.77

Schlupp
et al [373]

2014 Si Pt/YSZ/Pt 410 0.22 166 0.13 0.47 0.35 0.84

Kerman
et al [374]

2011 Si Pt/YSZ/Pt 500 0.31 1037 0.03 3.3 0.314 0.97

Tsuchiya
et al [375]

2011 Si Pt/YSZ/LSCF 510 21.1 155 25 0.46 0.34 0.75

Kerman
et al [376]

2012 Si Pt/YSZ-CGO/Pt 510 0.31 1025 0.03 4.4 0.23 0.41

Kerman
et al [377]

2012 Si Pt/CGO/Pt (Ru) 520 0.3 1177 0.03 4 0.29 0.6

Kerman
et al [378]

2015 Si Pt/YSZ/Pt 500 3 75 3.14 0.25 0.3 0.87

Garbayo
et al [379]

2014 Si LSC/YSZ/CGO 750 1.9 100 1.9 0.17 0.58 1.1

Baek et al
[380]

2015 Si Pt/YSZ/Pt 400 7.72 437 17.6 1.3 0.34 1.1

Baek et al
[381]

2016 Si Pt/YSZ/Pt 400 4 317 1.2 1.1 0.29 1.04

Kim et al
[382]

2016 STS/YSZ LSC/YSZ/Ni-
YSZ

550 16.8 560 3 1.3 0.46 1.1

Joo et al
[383]

2008 Ni Pt-LSC/
GDC/Ni

450 1.82 26 7 0.07 0.37 0.87

Lee et al
[384]

2014 Ni/STS Pt-LSC/YSZ-
GDC/Ni-GDC

450 0.87 28 3.1 0.07 0.4 0.91

Kwon et al
[385]

2011 AAO Pt/YSZ/Pt 500 0.035 350 0.01 1.2 0.29 1.02

Park et al
[386]

2014 AAO Pt/YSZ-GDC-
YSZ/Pt

500 25 100 25 0.25 0.40 1.1

Oh et al
[387]

2018 AAO Pt/SDC-YSZ-
SDC/Pt

450 5.62 562 1 1.25 0.45 1.07

Ha et al
[388]

2013 AAO Pt/YSZ/Pt 450 7.2 180 4 0.37 0.48 1.14

Shin et al
[389]

2019 AAO Pt/SDC-YSZ-
SDC/Pt-Ceria

500 8 800 1 1.8 0.44 1.14

µ-PC-SOFC Li et al
[390]

2016 Si Pt/GDC-
BZY/Pt

425 0.1 446 0.022 2.25 0.20 1.1

Kim et al
[391]

2011 Si,
corrugated

Pt/BZY/Pt 450 0.29 186 0.16 0.9 0.21 1.0

Chang
et al [392]

2013 AAO Pt/BZY/Pt 450 0.44 44 1 0.12 0.37 1.0

TF-SOFC Reolon
et al [393]

2018 NiO-YSZ Pt-LSC/CGO-
YSZ/Ni-YSZ

650 15.4 400 38.5 0.7 0.57 0.91

Shin et al
[384]

2020 NiO-YSZ LSC/CGO/Ni-
YSZ

500 920 920 100 1.7 0.54 1.14

Noh et al
[394]

2014 NiO-YSZ LSC-GDC/
CGO-YSZ/Ni-
YSZ

500 588 588 100 1.2 0.49 1.1

µ-PEM Yu et al
[347]

2019 Si Pt-C/Nafion/
Pt-C

80 1416 354 400 0.8 0.44 0.98

Yu et al
[344]

2003 Si Pt-C/Nafion/
Pt-C

25 57 190 30 0.26 0.73 (2
cells)

1.9

Morisawa
et al [347]

2014 Si Pt-C/Nafion/
Pt-C

45 38.4 240 16 0.4 0.5 1

4. Section-III: power management for IoT applications

Power management units (PMUs) are rapidly being developed to provide a significant amount of power for
sensors in IoT networks. The DC–DC power converter is the main component in the PMU placed in
between the power sources and the IoT devices. The aims of the DC–DC converters are to:
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• Regulate the input voltage coming from the sources to a required output voltage level to operate the IoT
device;Match the source impedancewith the IoT device impedance to achieve themaximumpower transfer.

To maintain a long battery or sustainable power sources life, high power-conversion efficiency is critical
for the PMU since it can add substantial overhead to the overall power consumption of the chip.

4.1. DC–DC power converters
IoT applications operate at low supply voltages which often range below 1 V, while the battery as the primary
or auxiliary power source for their stable voltage supply provides a voltage range from 1.2 V to 5 V. This
requires DC–DC converters to step down voltages. Low dropout (LDO) regulators [395, 396] provide high
supply rejection and regulated output voltage. However, this approach results in poor power efficiency. Buck
converters are a common architecture in step-down voltage converters for higher power regulations [397,
398]. Because of the large overhead associated with its control [398] along with the inductor size, buck
converters are also not good candidates for low power applications. Another approach is to use a
switched-capacitor DC–DC converter which has a power efficiency of up to 97% [399]. However, switched
capacitor designs typically only divide the input voltage and do not provide the ability of voltage regulation
[400]. A hybrid architecture has been shown in [401–403] where the first stage divides the battery voltage by
five using a switched capacitor DC–DC converter, then the design uses an LDO in the second stage for
output voltage regulation. However, the two-stage approaches suffer a lower conversion efficiency. It has
been shown to achieve maximum efficiency, where the hybrid architecture regulates a 1.3 V input to 0.4 V
and achieves a power efficiency of>80% for load ranges 1–240 µA [401].

4.2. Maximum power point tracking (MPPT) control
When electrically connected to an external load, the power energy sources such as solar and TEGs have
power characteristic curves where the impedance of the external load has a particular unique size, maximum
power is retrieved. This unique impedance varies considerably with both the design of the power energy
sources and their operating conditions. Subsequently, a MPPT control method needs to be utilized to actively
emulate the impedance of DC–DC to match the inner impedance of the power energy sources so that the
sources are always operating at the maximum power point.

State-of-the-art solutions are capable of performing MPPT and/or charging capabilities with dc
renewable sources [404–408]. As the I–V and P–V characteristics of the TEG follow the same principles as
that of the solar panel, MPPT techniques that are commonly used for solar panels can be reused for the TEG,
for instance, the perturb and observe (P&O) algorithm, hill climbing, and incremental conductance
technique. One of the most popular MPP finding methods in IoT applications is called fractional
open-circuit voltage (FOCV)[408]. FOCV method samples the open-circuit voltage (VOC) of the energy
harvester first and then determines the ratio of the VOC, which corresponds to the maximum power point of
the energy harvester. It is an a priori technique based on many past analyses and experiments with the
findings that the MPP for PV cells is around 0.71–0.82 of their VOC while other types of energy sources, such
as RF rectennas, TEGs, PEHs, and EMGs, are around half of the open-circuit voltage (VOC/2). The PMU
proposed in [406] is comprised of a 10× step-up charge pump with two-dimensional (2-D) tuning for
MPPT and a digital LDO regulator with input power sense capabilities.

4.3. Challenges and trends
• The single battery source-based IoT system falls into disuse. The more renewable energy sources with a
combination of battery sources start to play a mainstreaming to maintain long battery or sustainable power
sources’ life. This requires new circuit architectures with multiple inputs for power management to effi-
ciently deal with the power.

• Providing both MPPT as well as output voltage regulation is still an issue to be fully resolved. The state of
the art still used two-stage power converters. The first stage is usually buck, boost, or switched capacitor
converters with the implementation of MPPT power transfer, and the second stage is usually the LDO or
another DC–DC converter to regulate the output voltage fitting within the applications. This two-stage
solution gives a poor PCE and a relatively larger size of the PMU. There might be a chance for researchers
to integrate as a single-stage circuit architecture for both MPPT and output voltage regulation functions.

• The PMU requires low power consumption, small chips, small external components, such as inductors and
capacitors, and high efficiency. Therefore, low power and high-efficiency power management integrated
circuit (PMIC) is important to extend battery life and sustain the systemwithout charge. Themain challenge
is how to integrate bulk components such as inductors and capacitors in the same silicon substrate. A novel
three-dimensional in-silicon through-silicon via (TSV) magnetic-core toroidal inductor for power supply
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in packing is proposed in [409], and the first interposer converter with 3D TSV inductor is demonstrated at
DTU [410].

5. Concluding remarks

Harvesting and storage of energy play an important role in the efficiency and lifetime of IoT devices. The
central goal of energy harvesting systems for IoT is to move from battery-based devices to an autonomous
energy harvesting system that relies on energy harvested from the ambient environment. To reduce the
power consumption of batteries, a crucial step is to find alternative harvesting and storage solutions and
optimize the PMICs, which helps to enhance the system’s life span. In this review paper, we summarized the
current state-of-the-art IoT enabling and emerging harvesting and storage technologies covering the areas of
energy harvesting- and storage devices, and power management for IoT applications.

To harvest energy from a sustainable power supply, it is important to ensure the availability of the energy
source from which energy is supposed to be harvested, the high amount of harvested energy, and the high
efficiency of the harvesting system just to name a few. In this review, we have provided some of the
limitations and solutions concerning the energy sources and the way to harvest these. However, in reality, the
sources of energy are not continuous, and hence, a new way to ensure the continuous operation of IoT
devices should be considered. Recent advancements in IoT have drawn the attention of researchers and
developers toward systems where the storage unit is installed together with the harvesting units in the same
device [9, 281, 282, 411]. This surely increases the complexity of the IoT devices from the viewpoint of
electronics, when compared to the electronics associated with only battery-powered IoT devices, but on the
other hand, it provides an efficient and autonomous solution.

Furthermore, most of the harvesting devices discussed in this paper show the technological potential to
replace batteries for powering the IoT from the viewpoint of power output per unit device cross-section area.
The integration of high density of harvesting devices with a small footprint area is required to reach the
actual requirements of the power needed for the devices during the different modes of their operation.
Finally, the cost factors, such as the cost of the harvester system as compared with the battery storage must
also be considered when designing such a system [29]. Despite having still a vast amount of challenges in the
integration of the energy harvesting devices into the IoT units and their operation, they remain one of the
most reliable practical solutions for the replacement of batteries.
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