000999190 001__ 999190
000999190 005__ 20241023094534.0
000999190 0247_ $$2doi$$a10.1007/s44192-023-00033-6
000999190 0247_ $$2Handle$$a2128/33917
000999190 0247_ $$2pmid$$a37861863
000999190 0247_ $$2WOS$$aWOS:001319058800001
000999190 037__ $$aFZJ-2023-01219
000999190 1001_ $$0P:(DE-HGF)0$$aBajaj, Sahil$$b0$$eCorresponding author
000999190 245__ $$aMachine learning based identification of structural brain alterations underlying suicide risk in adolescents
000999190 260__ $$a[Cham]$$bSpringer International Publishing$$c2023
000999190 3367_ $$2DRIVER$$aarticle
000999190 3367_ $$2DataCite$$aOutput Types/Journal article
000999190 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676550171_5936
000999190 3367_ $$2BibTeX$$aARTICLE
000999190 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000999190 3367_ $$00$$2EndNote$$aJournal Article
000999190 520__ $$aSuicide is the third leading cause of death for individuals between 15 and 19 years of age. The high suicide mortality rate and limited prior success in identifying neuroimaging biomarkers indicate that it is crucial to improve the accuracy of clinical neural signatures underlying suicide risk. The current study implements machine-learning (ML) algorithms to examine structural brain alterations in adolescents that can discriminate individuals with suicide risk from typically developing (TD) adolescents at the individual level. Structural MRI data were collected from 79 adolescents who demonstrated clinical levels of suicide risk and 79 demographically matched TD adolescents. Region-specific cortical/subcortical volume (CV/SCV) was evaluated following whole-brain parcellation into 1000 cortical and 12 subcortical regions. CV/SCV parameters were used as inputs for feature selection and three ML algorithms (i.e., support vector machine [SVM], K-nearest neighbors, and ensemble) to classify adolescents at suicide risk from TD adolescents. The highest classification accuracy of 74.79% (with sensitivity = 75.90%, specificity = 74.07%, and area under the receiver operating characteristic curve = 87.18%) was obtained for CV/SCV data using the SVM classifier. Identified bilateral regions that contributed to the classification mainly included reduced CV within the frontal and temporal cortices but increased volume within the cuneus/precuneus for adolescents at suicide risk relative to TD adolescents. The current data demonstrate an unbiased region-specific ML framework to effectively assess the structural biomarkers of suicide risk. Future studies with larger sample sizes and the inclusion of clinical controls and independent validation data sets are needed to confirm our findings.
000999190 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000999190 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000999190 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000999190 7001_ $$0P:(DE-HGF)0$$aBlair, Karina S.$$b1
000999190 7001_ $$0P:(DE-HGF)0$$aDobbertin, Matthew$$b2
000999190 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b3
000999190 7001_ $$0P:(DE-HGF)0$$aTyler, Patrick M.$$b4
000999190 7001_ $$0P:(DE-HGF)0$$aRingle, Jay L.$$b5
000999190 7001_ $$0P:(DE-HGF)0$$aBashford-Largo, Johannah$$b6
000999190 7001_ $$0P:(DE-HGF)0$$aMathur, Avantika$$b7
000999190 7001_ $$0P:(DE-HGF)0$$aElowsky, Jaimie$$b8
000999190 7001_ $$0P:(DE-HGF)0$$aDominguez, Ahria$$b9
000999190 7001_ $$0P:(DE-HGF)0$$aSchmaal, Lianne$$b10
000999190 7001_ $$0P:(DE-HGF)0$$aBlair, R. James R.$$b11
000999190 773__ $$0PERI:(DE-600)3097626-1$$a10.1007/s44192-023-00033-6$$gVol. 3, no. 1, p. 6$$n1$$p6$$tDiscover mental health$$v3$$x2731-4383$$y2023
000999190 8564_ $$uhttps://juser.fz-juelich.de/record/999190/files/s44192-023-00033-6.pdf$$yOpenAccess
000999190 909CO $$ooai:juser.fz-juelich.de:999190$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000999190 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, 14015 Flanagan Blvd. Suite #102, Boys Town, NE, USA$$b0
000999190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b3$$kFZJ
000999190 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$a HHU Düsseldorf$$b3
000999190 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000999190 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000999190 9141_ $$y2023
000999190 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000999190 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000999190 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-29
000999190 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-29
000999190 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000999190 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:13:15Z
000999190 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:13:15Z
000999190 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:13:15Z
000999190 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000999190 9801_ $$aFullTexts
000999190 980__ $$ajournal
000999190 980__ $$aVDB
000999190 980__ $$aUNRESTRICTED
000999190 980__ $$aI:(DE-Juel1)INM-7-20090406