001     9996
005     20211110141629.0
024 7 _ |a 10.1088/1367-2630/12/6/063016
|2 DOI
024 7 _ |a WOS:000278635000002
|2 WOS
024 7 _ |a 2128/28977
|2 Handle
037 _ _ |a PreJuSER-9996
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |0 P:(DE-HGF)0
|a Sun, J.
|b 0
245 _ _ |a Structure and oscillatory multilayer relaxation of the bismuth (100) surface
260 _ _ |a [Bad Honnef]
|b Dt. Physikalische Ges.
|c 2010
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 8201
|a New Journal of Physics
|v 12
|x 1367-2630
|y 063016
500 _ _ |a We acknowledge valuable discussions with Professor Wolfgang Moritz and technical help from Dr Bogdan Diaconescu. This work was supported by the American National Science Foundation DMR-0134933 and the Petroleum Research Fund under grant no. 46323-AC5, the Danish National Science Foundation, the Basque Country Government and the University of the Basque Country.
520 _ _ |a We present a combined experimental and theoretical study of the surface structure of single crystal Bi(100) via scanning tunneling microscopy (STM), low-energy electron diffraction intensity versus energy (LEED-IV) analysis and density functional theory (DFT). We find that the surface is unreconstructed and shows an unusually large oscillatory multilayer relaxation down to the sixth layer. This unexpected behavior will be explained by a novel mechanism related to the deeply penetrating electronic surface states. STM reveals wide (100) terraces, which are separated by two-layer high steps in which the shorter of the two interlayer spacings is terminating this surface, consistent with the LEED structural analysis and DFT.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Wang, J.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Wells, J.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Koroteev, Y. M.
|b 3
700 1 _ |0 P:(DE-Juel1)130545
|a Bihlmayer, G.
|b 4
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Chulkov, E. V.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Hofmann, Ph.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Pohl, K.
|b 7
773 _ _ |0 PERI:(DE-600)1464444-7
|a 10.1088/1367-2630/12/6/063016
|g Vol. 12
|q 12
|t New journal of physics
|v 12
|x 1367-2630
|y 2010
856 7 _ |u http://dx.doi.org/10.1088/1367-2630/12/6/063016
856 4 _ |u https://juser.fz-juelich.de/record/9996/files/Sun_2010_New_J._Phys._12_063016.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:9996
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)120145
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21