001     9997
005     20211110141629.0
024 7 _ |a 10.1088/1367-2630/12/6/065006
|2 DOI
024 7 _ |a WOS:000279876800004
|2 WOS
024 7 _ |a 2128/28976
|2 Handle
037 _ _ |a PreJuSER-9997
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |0 P:(DE-Juel1)130545
|a Bihlmayer, G.
|b 0
|u FZJ
245 _ _ |a Surface- and edge-states in ultrathin Bi-Sb films
260 _ _ |a [Bad Honnef]
|b Dt. Physikalische Ges.
|c 2010
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 8201
|a New Journal of Physics
|v 12
|x 1367-2630
|y 065006
500 _ _ |a GB is grateful for the hospitality of the Donostia International Physics Center, where part of this work originated, and the financial support of the Deutsche Forschungsgemeinschaft (grant no. BI823/1-1).
520 _ _ |a Employing first-principles calculations, we studied the electronic structure of ultrathin Bi-Sb films, focusing on the appearance of surface or edge states that are topologically protected. Our calculations show that in ordered structures the Bi-Sb bonds are quite strong, forming well-defined double layers that contain both elements. We find surface states appearing on the (111) surface of a thin film of layerwise ordered Bi-Sb compound, while thin films in (110) orientation are insulating. In the gap of this insulator, edge states can be found in a (110)-oriented ribbon in the A17 (black phosphorus) structure. While these states are strongly spin polarized, their topological properties are found to be trivial. In all structures, we investigate the influence of spin-orbit coupling and analyze spin polarization of the states at the boundaries of the material.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Koroteev, Y. M.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Chulkov, E. V.
|b 2
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, S.
|b 3
|u FZJ
773 _ _ |0 PERI:(DE-600)1464444-7
|a 10.1088/1367-2630/12/6/065006
|g Vol. 12
|q 12
|t New journal of physics
|v 12
|x 1367-2630
|y 2010
856 7 _ |u http://dx.doi.org/10.1088/1367-2630/12/6/065006
856 4 _ |u https://juser.fz-juelich.de/record/9997/files/Bihlmayer_2010_New_J._Phys._12_065006.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:9997
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1346
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)120146
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)VDB881
981 _ _ |a I:(DE-Juel1)VDB1346


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21