001005101 001__ 1005101
001005101 005__ 20240712113105.0
001005101 0247_ $$2doi$$a10.1002/aenm.202202789
001005101 0247_ $$2ISSN$$a1614-6832
001005101 0247_ $$2ISSN$$a1614-6840
001005101 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01300
001005101 0247_ $$2WOS$$aWOS:000888918600001
001005101 037__ $$aFZJ-2023-01300
001005101 082__ $$a050
001005101 1001_ $$0P:(DE-HGF)0$$aHoffknecht, Jan-Philipp$$b0
001005101 245__ $$aCoordinating Anions “to the Rescue” of the Lithium Ion Mobility in Ternary Solid Polymer Electrolytes Plasticized With Ionic Liquids
001005101 260__ $$aWeinheim$$bWiley-VCH$$c2023
001005101 3367_ $$2DRIVER$$aarticle
001005101 3367_ $$2DataCite$$aOutput Types/Journal article
001005101 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705045377_2554
001005101 3367_ $$2BibTeX$$aARTICLE
001005101 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005101 3367_ $$00$$2EndNote$$aJournal Article
001005101 520__ $$aLithium salts with low coordinating anions such as bis(trifluoromethanesulfonyl)imide (TFSI) have been the state-of-the-art for polyethylene oxide (PEO)-based “dry” polymer electrolytes for 3 decades. Plasticizing PEO with TFSI-based ionic liquids (ILs) to form ternary solid polymer electrolytes (TSPEs) increases conductivity and Li+ diffusivity. However, the Li+ transport mechanism is unaffected compared to their “dry” counterparts and is essentially coupled to the dynamics of the polymer host matrix, which limits Li+ transport improvement. Thus, a paradigm shift is hereby suggested: the utilization of more coordinating anions such as trifluoromethanesulfonyl-N-cyanoamide (TFSAM), able to compete with PEO for Li+ solvation, to accelerate the Li+ transport and reach a higher Li+ transference number. The Li–TFSAM interaction in binary and ternary TFSAM-based electrolytes is probed by experimental methods and discussed in the context of recent computational results. In PEO-based TSPEs, TFSAM drastically accelerates the Li+ transport (increases Li+ transference number by a factor 6 and the Li+ conductivity by 2–3) and computer simulations reveal that lithium dynamics are effectively re-coupled from polymer to anion dynamics. Last, this concept of coordinating anions in TSPEs is successfully applied in LFP||Li metal cells leading to enhanced capacity retention (86% after 300 cycles) and an improved rate performance at 2C.
001005101 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001005101 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001005101 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005101 7001_ $$00000-0003-2693-3653$$aWettstein, Alina$$b1
001005101 7001_ $$0P:(DE-Juel1)174235$$aAtik, Jaschar$$b2
001005101 7001_ $$aKrause, Christian$$b3
001005101 7001_ $$0P:(DE-Juel1)179050$$aThienenkamp, Johannes$$b4
001005101 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b5
001005101 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6
001005101 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b7$$eCorresponding author
001005101 7001_ $$0P:(DE-Juel1)176646$$aHeuer, Andreas$$b8$$eCorresponding author
001005101 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b9
001005101 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202202789$$gVol. 13, no. 1, p. 2202789 -$$n1$$p2202789 -$$tAdvanced energy materials$$v13$$x1614-6832$$y2023
001005101 8564_ $$uhttps://juser.fz-juelich.de/record/1005101/files/Advanced%20Energy%20Materials%20-%202022%20-%20Hoffknecht%20-%20Coordinating%20Anions%20to%20the%20Rescue%20of%20the%20Lithium%20Ion%20Mobility%20in%20Ternary.pdf$$yOpenAccess
001005101 8767_ $$d2022-02-15$$eHybrid-OA$$jDEAL
001005101 909CO $$ooai:juser.fz-juelich.de:1005101$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001005101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179050$$aForschungszentrum Jülich$$b4$$kFZJ
001005101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b5$$kFZJ
001005101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
001005101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b7$$kFZJ
001005101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176646$$aForschungszentrum Jülich$$b8$$kFZJ
001005101 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001005101 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001005101 9141_ $$y2023
001005101 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005101 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001005101 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001005101 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005101 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-12$$wger
001005101 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001005101 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005101 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001005101 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001005101 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001005101 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001005101 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001005101 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001005101 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2022$$d2023-10-26
001005101 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001005101 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001005101 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2022$$d2023-10-26
001005101 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001005101 9801_ $$aAPC
001005101 9801_ $$aFullTexts
001005101 980__ $$ajournal
001005101 980__ $$aVDB
001005101 980__ $$aUNRESTRICTED
001005101 980__ $$aI:(DE-Juel1)IEK-12-20141217
001005101 980__ $$aAPC
001005101 981__ $$aI:(DE-Juel1)IMD-4-20141217