001005108 001__ 1005108
001005108 005__ 20240619092026.0
001005108 0247_ $$2doi$$a10.1021/acsphyschemau.2c00057
001005108 0247_ $$2Handle$$a2128/34210
001005108 0247_ $$2pmid$$a36968449
001005108 0247_ $$2WOS$$aWOS:001006819300001
001005108 037__ $$aFZJ-2023-01307
001005108 082__ $$a530
001005108 1001_ $$0P:(DE-HGF)0$$aChua, Yeong Zen$$b0
001005108 245__ $$aDetermination of Cooperativity Length in a Glass-Forming Polymer
001005108 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2023
001005108 3367_ $$2DRIVER$$aarticle
001005108 3367_ $$2DataCite$$aOutput Types/Journal article
001005108 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680000192_30209
001005108 3367_ $$2BibTeX$$aARTICLE
001005108 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005108 3367_ $$00$$2EndNote$$aJournal Article
001005108 520__ $$aTo describe the properties of glass-forming liquids, the concepts of a cooperativity length or the size of cooperatively rearranging regions are widely employed. Their knowledge is of outstanding importance for the understanding of both thermodynamic and kinetic properties of the systems under consideration and the mechanisms of crystallization processes. By this reason, methods of experimental determination of this quantity are of outstanding importance. Proceeding in this direction, we determine the so-called cooperativity number and, based on it, the cooperativity length by experimental measurements utilizing AC calorimetry and quasi-elastic neutron scattering (QENS) at comparable times. The results obtained are different in dependence on whether temperature fluctuations in the considered nanoscale subsystems are either accounted for or neglected in the theoretical treatment. It is still an open question, which of these mutually exclusive approaches is the correct one. As shown in the present paper on the example of poly(ethyl methacrylate) (PEMA), the cooperative length of about 1 nm at 400 K and a characteristic time of ca. 2 μs determined from QENS coincide most consistently with the cooperativity length determined from AC calorimetry measurements if the effect of temperature fluctuations is incorporated in the description. This conclusion indicates that─accounting for temperature fluctuations─the characteristic length can be derived by thermodynamic considerations from the specific parameters of the liquid at the glass transition and that temperature does fluctuate in small subsystems.
001005108 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001005108 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001005108 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005108 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
001005108 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001005108 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x0
001005108 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x1
001005108 7001_ $$0P:(DE-Juel1)131067$$aZorn, Reiner$$b1$$eCorresponding author
001005108 7001_ $$00000-0002-5414-6860$$aSchmelzer, Jürn W. P.$$b2
001005108 7001_ $$00000-0001-6736-5491$$aSchick, Christoph$$b3
001005108 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b4
001005108 7001_ $$0P:(DE-Juel1)131056$$aZamponi, Michaela$$b5
001005108 773__ $$0PERI:(DE-600)3094428-4$$a10.1021/acsphyschemau.2c00057$$gp. acsphyschemau.2c00057$$n2$$p172–180$$tACS physical chemistry Au$$v3$$x2694-2445$$y2023
001005108 8564_ $$uhttps://juser.fz-juelich.de/record/1005108/files/Invoice_APC600374485.pdf
001005108 8564_ $$uhttps://juser.fz-juelich.de/record/1005108/files/acsphyschemau.2c00057.pdf$$yOpenAccess
001005108 8767_ $$8APC600374485$$92022-12-15$$a1200187184$$d2022-12-19$$eAPC$$jZahlung erfolgt$$zUSD 5000,-
001005108 909CO $$ooai:juser.fz-juelich.de:1005108$$pdnbdelivery$$popenCost$$pVDB$$pVDB:MLZ$$pdriver$$pOpenAPC$$popen_access$$popenaire
001005108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131067$$aForschungszentrum Jülich$$b1$$kFZJ
001005108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b4$$kFZJ
001005108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich$$b5$$kFZJ
001005108 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001005108 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001005108 9141_ $$y2023
001005108 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005108 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001005108 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001005108 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001005108 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005108 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005108 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001005108 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001005108 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-30
001005108 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-30
001005108 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-30
001005108 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-18T10:14:53Z
001005108 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-18T10:14:53Z
001005108 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-18T10:14:53Z
001005108 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-30
001005108 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-30
001005108 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-30
001005108 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
001005108 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x1
001005108 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
001005108 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x3
001005108 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x4
001005108 9801_ $$aAPC
001005108 9801_ $$aFullTexts
001005108 980__ $$ajournal
001005108 980__ $$aVDB
001005108 980__ $$aUNRESTRICTED
001005108 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001005108 980__ $$aI:(DE-Juel1)IBI-8-20200312
001005108 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001005108 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001005108 980__ $$aI:(DE-588b)4597118-3
001005108 980__ $$aAPC
001005108 981__ $$aI:(DE-Juel1)JCNS-1-20110106