001     1005108
005     20240619092026.0
024 7 _ |a 10.1021/acsphyschemau.2c00057
|2 doi
024 7 _ |a 2128/34210
|2 Handle
024 7 _ |a 36968449
|2 pmid
024 7 _ |a WOS:001006819300001
|2 WOS
037 _ _ |a FZJ-2023-01307
082 _ _ |a 530
100 1 _ |a Chua, Yeong Zen
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Determination of Cooperativity Length in a Glass-Forming Polymer
260 _ _ |a Washington, DC
|c 2023
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680000192_30209
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To describe the properties of glass-forming liquids, the concepts of a cooperativity length or the size of cooperatively rearranging regions are widely employed. Their knowledge is of outstanding importance for the understanding of both thermodynamic and kinetic properties of the systems under consideration and the mechanisms of crystallization processes. By this reason, methods of experimental determination of this quantity are of outstanding importance. Proceeding in this direction, we determine the so-called cooperativity number and, based on it, the cooperativity length by experimental measurements utilizing AC calorimetry and quasi-elastic neutron scattering (QENS) at comparable times. The results obtained are different in dependence on whether temperature fluctuations in the considered nanoscale subsystems are either accounted for or neglected in the theoretical treatment. It is still an open question, which of these mutually exclusive approaches is the correct one. As shown in the present paper on the example of poly(ethyl methacrylate) (PEMA), the cooperative length of about 1 nm at 400 K and a characteristic time of ca. 2 μs determined from QENS coincide most consistently with the cooperativity length determined from AC calorimetry measurements if the effect of temperature fluctuations is incorporated in the description. This conclusion indicates that─accounting for temperature fluctuations─the characteristic length can be derived by thermodynamic considerations from the specific parameters of the liquid at the glass transition and that temperature does fluctuate in small subsystems.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Basic research
|0 V:(DE-MLZ)GC-2004-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e J-NSE: Neutron spin-echo spectrometer
|f NL2ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)J-NSE-20140101
|5 EXP:(DE-MLZ)J-NSE-20140101
|6 EXP:(DE-MLZ)NL2ao-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e SPHERES: Backscattering spectrometer
|f NL6S
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)SPHERES-20140101
|5 EXP:(DE-MLZ)SPHERES-20140101
|6 EXP:(DE-MLZ)NL6S-20140101
|x 1
700 1 _ |a Zorn, Reiner
|0 P:(DE-Juel1)131067
|b 1
|e Corresponding author
700 1 _ |a Schmelzer, Jürn W. P.
|0 0000-0002-5414-6860
|b 2
700 1 _ |a Schick, Christoph
|0 0000-0001-6736-5491
|b 3
700 1 _ |a Holderer, Olaf
|0 P:(DE-Juel1)130718
|b 4
700 1 _ |a Zamponi, Michaela
|0 P:(DE-Juel1)131056
|b 5
773 _ _ |a 10.1021/acsphyschemau.2c00057
|g p. acsphyschemau.2c00057
|0 PERI:(DE-600)3094428-4
|n 2
|p 172–180
|t ACS physical chemistry Au
|v 3
|y 2023
|x 2694-2445
856 4 _ |u https://juser.fz-juelich.de/record/1005108/files/Invoice_APC600374485.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1005108/files/acsphyschemau.2c00057.pdf
909 C O |o oai:juser.fz-juelich.de:1005108
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:MLZ
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131067
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131056
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-18T10:14:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-18T10:14:53Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-18T10:14:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-30
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-8-20200312
|k IBI-8
|l Neutronenstreuung und biologische Materie
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 3
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 4
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)IBI-8-20200312
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21