001005112 001__ 1005112
001005112 005__ 20240712084526.0
001005112 0247_ $$2doi$$a10.1002/solr.202200593
001005112 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01311
001005112 0247_ $$2WOS$$aWOS:000874404300001
001005112 037__ $$aFZJ-2023-01311
001005112 082__ $$a600
001005112 1001_ $$0P:(DE-Juel1)177942$$aSovetkin, Evgenii$$b0$$eCorresponding author
001005112 245__ $$aVehicle‐Integrated Photovoltaics Irradiation Modeling Using Aerial‐Based LIDAR Data and Validation with Trip Measurements
001005112 260__ $$aWeinheim$$bWiley-VCH$$c2023
001005112 3367_ $$2DRIVER$$aarticle
001005112 3367_ $$2DataCite$$aOutput Types/Journal article
001005112 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712754720_24399
001005112 3367_ $$2BibTeX$$aARTICLE
001005112 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005112 3367_ $$00$$2EndNote$$aJournal Article
001005112 520__ $$aHerein, a benchmark dataset for vehicle-integrated photovoltaics irradiance modeling is proposed. The vehicle trip data consist of trips in the state of North Rhine-Westphalia in Germany starting from March 2021, which amounts to more than 73 h and a total distance of 3422 km. The sensor box is equipped with GPS, a magnetic compass, acoustic wind, and irradiance sensors and records at a rate of 0.58 Hz. The irradiance sensors are positioned on four sides of the vehicle: roof, left, right, and rear. In addition to the data, a model that uses high-resolution aerial-measured topography (LIDAR) and low-resolution satellite-based weather data to forecast the effective irradiation of modules mounted on a moving vehicle is discussed. The utility of the simulation approach is demonstrated by computing irradiation over long periods for various driving profiles and comparing results with the collected measurement data. The data are published as a challenge, and the developed software is available in open source.
001005112 536__ $$0G:(DE-HGF)POF4-1214$$a1214 - Modules, stability, performance and specific applications (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001005112 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005112 7001_ $$0P:(DE-Juel1)130276$$aNoll, Jonas$$b1
001005112 7001_ $$0P:(DE-Juel1)184851$$aPatel, Neel$$b2
001005112 7001_ $$0P:(DE-Juel1)130241$$aGerber, Andreas$$b3
001005112 7001_ $$0P:(DE-Juel1)130284$$aPieters, Bart$$b4$$ufzj
001005112 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202200593$$gp. 2200593 -$$n8$$p2200593 -$$tSolar RRL$$v7$$x2367-198X$$y2023
001005112 8564_ $$uhttps://juser.fz-juelich.de/record/1005112/files/Solar%20RRL%20-%202022%20-%20Sovetkin%20-%20Vehicle%E2%80%90Integrated%20Photovoltaics%20Irradiation%20Modeling%20Using%20Aerial%E2%80%90Based%20LIDAR%20Data%20and.pdf$$yOpenAccess
001005112 8767_ $$d2023-02-27$$eHybrid-OA$$jDEAL
001005112 909CO $$ooai:juser.fz-juelich.de:1005112$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001005112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177942$$aForschungszentrum Jülich$$b0$$kFZJ
001005112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130276$$aForschungszentrum Jülich$$b1$$kFZJ
001005112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184851$$aForschungszentrum Jülich$$b2$$kFZJ
001005112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130241$$aForschungszentrum Jülich$$b3$$kFZJ
001005112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130284$$aForschungszentrum Jülich$$b4$$kFZJ
001005112 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001005112 9141_ $$y2023
001005112 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005112 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001005112 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
001005112 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001005112 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-16$$wger
001005112 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
001005112 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005112 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2022$$d2023-10-27
001005112 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001005112 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001005112 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001005112 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001005112 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-27
001005112 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001005112 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2022$$d2023-10-27
001005112 920__ $$lyes
001005112 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
001005112 9801_ $$aAPC
001005112 9801_ $$aFullTexts
001005112 980__ $$ajournal
001005112 980__ $$aVDB
001005112 980__ $$aUNRESTRICTED
001005112 980__ $$aI:(DE-Juel1)IEK-5-20101013
001005112 980__ $$aAPC
001005112 981__ $$aI:(DE-Juel1)IMD-3-20101013