001     1005143
005     20240712112851.0
024 7 _ |a 10.3390/en15218290
|2 doi
024 7 _ |a 2128/34045
|2 Handle
024 7 _ |a WOS:000883991700001
|2 WOS
037 _ _ |a FZJ-2023-01331
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Stock, Jan
|0 P:(DE-Juel1)179375
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Framework for the Automated Identification of Possible District Heating Separations to Utilise Present Heat Sources Based on Existing Network Topology
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1704721418_17509
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ambitious climate targets of the European Union emphasise the necessity to reduce carbon dioxide emissions in the building sector. Therefore, various sustainable heat sources should be used in existing district heating systems to cover the heat demands of buildings. However, integrating on-site heat sources into large existing district heating networks could be challenging dueto temperature or capacity limitations since such large district heating systems are often supplied by large fossil-based heating plants. Most sustainable heat sources that should be utilised in districtheating systems differ in their geographical locations or have limited heat capacities and, therefore, cannot easily replace conventional heating plants. The resulting difficulty of integrating limited heatsources into large district heating networks could be tackled by separating the existing network structure into two independent heat distribution networks. In this study, we present a developedframework that automatically recommends which network parts of an existing district heating system could be hydraulically separated in order to utilise a present heat source that is not yet in use. Inthis way, a second, standalone district heating system, supplied by the utilised heat source, could be established. The framework applies a community detection algorithm to the existing district heatingnetwork to first identify communities in the structure. Neighbouring communities are aggregated to larger network areas, taking into account that these areas could be supplied with the availableamount of heat. These network areas are classified as possible areas for separation if the shortest connection path to the utilised heat source is within a certain distance. Subsequently, the foundpossibilities for network separation are simulated to test a feasible district heating operation and to evaluate the environmental and economic impacts. The presented framework is tested with a meshedand a spanning-tree network structure. Overall, the developed framework presents an approach to utilise present heat sources in separated network structures by automatically identifying, testing andevaluating possible network separations.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Xhonneux, André
|0 P:(DE-Juel1)8457
|b 1
|u fzj
700 1 _ |a Müller, Dirk
|0 P:(DE-Juel1)172026
|b 2
|u fzj
773 _ _ |a 10.3390/en15218290
|g Vol. 15, no. 21, p. 8290 -
|0 PERI:(DE-600)2437446-5
|n 21
|p 8290 -
|t Energies
|v 15
|y 2022
|x 1996-1073
856 4 _ |u https://juser.fz-juelich.de/record/1005143/files/energies-15-08290-v2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005143
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179375
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)8457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172026
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGIES : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-19T09:53:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-19T09:53:42Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21