Journal Article FZJ-2023-01331

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Framework for the Automated Identification of Possible District Heating Separations to Utilise Present Heat Sources Based on Existing Network Topology

 ;  ;

2022
MDPI Basel

Energies 15(21), 8290 - () [10.3390/en15218290]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The ambitious climate targets of the European Union emphasise the necessity to reduce carbon dioxide emissions in the building sector. Therefore, various sustainable heat sources should be used in existing district heating systems to cover the heat demands of buildings. However, integrating on-site heat sources into large existing district heating networks could be challenging dueto temperature or capacity limitations since such large district heating systems are often supplied by large fossil-based heating plants. Most sustainable heat sources that should be utilised in districtheating systems differ in their geographical locations or have limited heat capacities and, therefore, cannot easily replace conventional heating plants. The resulting difficulty of integrating limited heatsources into large district heating networks could be tackled by separating the existing network structure into two independent heat distribution networks. In this study, we present a developedframework that automatically recommends which network parts of an existing district heating system could be hydraulically separated in order to utilise a present heat source that is not yet in use. Inthis way, a second, standalone district heating system, supplied by the utilised heat source, could be established. The framework applies a community detection algorithm to the existing district heatingnetwork to first identify communities in the structure. Neighbouring communities are aggregated to larger network areas, taking into account that these areas could be supplied with the availableamount of heat. These network areas are classified as possible areas for separation if the shortest connection path to the utilised heat source is within a certain distance. Subsequently, the foundpossibilities for network separation are simulated to test a feasible district heating operation and to evaluate the environmental and economic impacts. The presented framework is tested with a meshedand a spanning-tree network structure. Overall, the developed framework presents an approach to utilise present heat sources in separated network structures by automatically identifying, testing andevaluating possible network separations.

Classification:

Contributing Institute(s):
  1. Modellierung von Energiesystemen (IEK-10)
Research Program(s):
  1. 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112) (POF4-112)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-1
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-10
Publications database
Open Access

 Record created 2023-02-28, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)