001     1005145
005     20240226075353.0
024 7 _ |2 doi
|a 10.1016/j.bios.2022.114219
024 7 _ |2 Handle
|a 2128/34137
024 7 _ |a 35367704
|2 pmid
024 7 _ |a WOS:000792492900006
|2 WOS
037 _ _ |a FZJ-2023-01333
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)171348
|a Figueroa Miranda, Gabriela
|b 0
245 _ _ |a Delineating charge and capacitance transduction in system-integrated graphene-based BioFETs used as aptasensors for malaria detection
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2022
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1678873551_10736
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Despite significant eradication efforts, malaria remains a persistent infectious disease with high mortality due to the lack of efficient point-of-care (PoC) screening solutions required to manage low-density asymptomatic parasitemia. In response, we demonstrate a quantitative electrical biosensor based on system-integrated two-dimensional field-effect transistors (2DBioFETs) of reduced graphene oxide (rGO) as transducer for high sensitivity screening of the main malaria biomarker, Plasmodium falciparum lactate dehydrogenase (PfLDH). The 2DBioFETs were biofunctionalized with pyrene-modified 2008s aptamers as specific PfLDH receptors. While we systematically optimize biosensor interface for optimal performance, aptamer-protein transduction at 2DBioFETs is elucidated based on delineation of charge and capacitance in an updated analytical model for two-dimensional rGO/biofunctional layer/electrolyte (2DiBLE) interfaces. Our 2DBioFET-aptasensors display a limit-of-detection down to 0.78 fM (0.11 pg/mL), dynamic ranges over 9 orders of magnitude (subfemto to submicromolar), high sensitivity, and selectivity in human serum validating their diagnostic potential as rapid PoC tests for malarial management.
536 _ _ |0 G:(DE-HGF)POF4-5241
|a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|c POF4-524
|f POF IV
|x 0
700 1 _ |0 P:(DE-Juel1)168271
|a Liang, Yuanying
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Suranglikar, Mohit
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Stadler, Matthias
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Samane, Nagesh
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Tintelott, Marcel
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Lo, Young
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Tanner, Julian A.
|b 7
700 1 _ |0 P:(DE-Juel1)191090
|a Vu, Duy Tam
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Knoch, Joachim
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Ingebrandt, Sven
|b 10
700 1 _ |0 P:(DE-Juel1)128713
|a Offenhäusser, Andreas
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Pachauri, Vivek
|b 12
700 1 _ |0 P:(DE-Juel1)128707
|a Mayer, Dirk
|b 13
|e Corresponding author
773 _ _ |0 PERI:(DE-600)1496379-6
|a 10.1016/j.bios.2022.114219
|p 114219
|t Biosensors and bioelectronics
|v 208
|x 0956-5663
|y 2022
856 4 _ |u https://juser.fz-juelich.de/record/1005145/files/rGOISFET_malarial%20parasitemia_main.pdf
|y Published on 2022-03-26. Available in OpenAccess from 2024-03-26.
909 C O |o oai:juser.fz-juelich.de:1005145
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171348
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128713
|a Forschungszentrum Jülich
|b 11
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128707
|a Forschungszentrum Jülich
|b 13
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-524
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5241
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Molecular and Cellular Information Processing
|x 0
914 1 _ |y 2023
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2022-11-24
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2022-11-24
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2022-11-24
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2022-11-24
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2022-11-24
915 _ _ |0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
915 _ _ |0 StatID:(DE-HGF)0530
|2 StatID
|a Embargoed OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b BIOSENS BIOELECTRON : 2021
|d 2022-11-24
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2022-11-24
915 _ _ |0 StatID:(DE-HGF)9910
|2 StatID
|a IF >= 10
|b BIOSENS BIOELECTRON : 2021
|d 2022-11-24
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2022-11-24
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2022-11-24
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-24
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2022-11-24
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2022-11-24
|w ger
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2022-11-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21