001005150 001__ 1005150
001005150 005__ 20240226075353.0
001005150 0247_ $$2doi$$a10.1016/j.ab.2022.114633
001005150 0247_ $$2Handle$$a2128/34139
001005150 0247_ $$2pmid$$a35247355
001005150 0247_ $$2WOS$$aWOS:000793071600006
001005150 037__ $$aFZJ-2023-01338
001005150 082__ $$a540
001005150 1001_ $$0P:(DE-Juel1)190451$$aMartinez Roque, Mateo Alejandro$$b0
001005150 245__ $$aDNA aptamer selection for SARS-CoV-2 spike glycoprotein detection
001005150 260__ $$aSan Diego, Calif.$$bElsevier$$c2022
001005150 3367_ $$2DRIVER$$aarticle
001005150 3367_ $$2DataCite$$aOutput Types/Journal article
001005150 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678873785_11302
001005150 3367_ $$2BibTeX$$aARTICLE
001005150 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005150 3367_ $$00$$2EndNote$$aJournal Article
001005150 520__ $$aThe rapid spread of SARS-CoV-2 infection throughout the world led to a global public health and economic crisis triggering an urgent need for the development of low-cost vaccines, therapies and high-throughput detection assays. In this work, we used a combination of Ideal-Filter Capillary Electrophoresis SELEX (IFCE-SELEX), Next Generation Sequencing (NGS) and binding assays to isolate and validate single-stranded DNA aptamers that can specifically recognize the SARS-CoV-2 Spike glycoprotein. Two selected non-competing DNA aptamers, C7 and C9 were successfully used as sensitive and specific biological recognition elements for the development of electrochemical and fluorescent aptasensors for the SARS-CoV-2 Spike glycoprotein with detection limits of 0.07 fM and 41.87 nM, respectively.
001005150 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001005150 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
001005150 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
001005150 7001_ $$0P:(DE-HGF)0$$aFranco-Urquijo, Pablo Alberto$$b1
001005150 7001_ $$0P:(DE-HGF)0$$aGarcía-Velásquez, Víctor Miguel$$b2
001005150 7001_ $$0P:(DE-HGF)0$$aChoukeife, Moujab$$b3
001005150 7001_ $$0P:(DE-HGF)0$$aMayer, Günther$$b4
001005150 7001_ $$0P:(DE-Juel1)188110$$aMolina, Sergio$$b5
001005150 7001_ $$0P:(DE-Juel1)171348$$aFigueroa Miranda, Gabriela$$b6
001005150 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b7$$eCorresponding author
001005150 7001_ $$0P:(DE-HGF)0$$aAlvarez-Salas, Luis M$$b8
001005150 773__ $$0PERI:(DE-600)1461105-3$$a10.1016/j.ab.2022.114633$$p114633$$tAnalytical biochemistry$$v645$$x0003-2697$$y2022
001005150 8564_ $$uhttps://juser.fz-juelich.de/record/1005150/files/Martinez_2022_COVID-19%20aptamer.pdf$$yPublished on 2022-03-02. Available in OpenAccess from 2024-03-02.
001005150 909CO $$ooai:juser.fz-juelich.de:1005150$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005150 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
001005150 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001005150 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-15
001005150 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-15
001005150 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15
001005150 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001005150 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001005150 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANAL BIOCHEM : 2021$$d2022-11-15
001005150 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001005150 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-15
001005150 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
001005150 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-15
001005150 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15
001005150 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
001005150 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-15$$wger
001005150 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
001005150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190451$$aForschungszentrum Jülich$$b0$$kFZJ
001005150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171348$$aForschungszentrum Jülich$$b6$$kFZJ
001005150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b7$$kFZJ
001005150 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001005150 9141_ $$y2023
001005150 920__ $$lyes
001005150 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001005150 980__ $$ajournal
001005150 980__ $$aVDB
001005150 980__ $$aUNRESTRICTED
001005150 980__ $$aI:(DE-Juel1)IBI-3-20200312
001005150 9801_ $$aFullTexts