Home > Publications database > DNA aptamer selection for SARS-CoV-2 spike glycoprotein detection > print |
001 | 1005150 | ||
005 | 20240226075353.0 | ||
024 | 7 | _ | |2 doi |a 10.1016/j.ab.2022.114633 |
024 | 7 | _ | |2 Handle |a 2128/34139 |
024 | 7 | _ | |a 35247355 |2 pmid |
024 | 7 | _ | |a WOS:000793071600006 |2 WOS |
037 | _ | _ | |a FZJ-2023-01338 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |0 P:(DE-Juel1)190451 |a Martinez Roque, Mateo Alejandro |b 0 |
245 | _ | _ | |a DNA aptamer selection for SARS-CoV-2 spike glycoprotein detection |
260 | _ | _ | |a San Diego, Calif. |b Elsevier |c 2022 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1678873785_11302 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a The rapid spread of SARS-CoV-2 infection throughout the world led to a global public health and economic crisis triggering an urgent need for the development of low-cost vaccines, therapies and high-throughput detection assays. In this work, we used a combination of Ideal-Filter Capillary Electrophoresis SELEX (IFCE-SELEX), Next Generation Sequencing (NGS) and binding assays to isolate and validate single-stranded DNA aptamers that can specifically recognize the SARS-CoV-2 Spike glycoprotein. Two selected non-competing DNA aptamers, C7 and C9 were successfully used as sensitive and specific biological recognition elements for the development of electrochemical and fluorescent aptasensors for the SARS-CoV-2 Spike glycoprotein with detection limits of 0.07 fM and 41.87 nM, respectively. |
536 | _ | _ | |0 G:(DE-HGF)POF4-5241 |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |c POF4-524 |f POF IV |x 0 |
650 | 2 | 7 | |0 V:(DE-MLZ)SciArea-160 |2 V:(DE-HGF) |a Biology |x 0 |
650 | 2 | 7 | |0 V:(DE-MLZ)SciArea-110 |2 V:(DE-HGF) |a Chemistry |x 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Franco-Urquijo, Pablo Alberto |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a García-Velásquez, Víctor Miguel |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Choukeife, Moujab |b 3 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Mayer, Günther |b 4 |
700 | 1 | _ | |0 P:(DE-Juel1)188110 |a Molina, Sergio |b 5 |
700 | 1 | _ | |0 P:(DE-Juel1)171348 |a Figueroa Miranda, Gabriela |b 6 |
700 | 1 | _ | |0 P:(DE-Juel1)128707 |a Mayer, Dirk |b 7 |e Corresponding author |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Alvarez-Salas, Luis M |b 8 |
773 | _ | _ | |0 PERI:(DE-600)1461105-3 |a 10.1016/j.ab.2022.114633 |p 114633 |t Analytical biochemistry |v 645 |x 0003-2697 |y 2022 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1005150/files/Martinez_2022_COVID-19%20aptamer.pdf |y Published on 2022-03-02. Available in OpenAccess from 2024-03-02. |
909 | C | O | |o oai:juser.fz-juelich.de:1005150 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)190451 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)171348 |a Forschungszentrum Jülich |b 6 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)128707 |a Forschungszentrum Jülich |b 7 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-524 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5241 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Molecular and Cellular Information Processing |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2022-11-15 |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2022-11-15 |
915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |d 2022-11-15 |
915 | _ | _ | |0 StatID:(DE-HGF)1190 |2 StatID |a DBCoverage |b Biological Abstracts |d 2022-11-15 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2022-11-15 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0530 |2 StatID |a Embargoed OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b ANAL BIOCHEM : 2021 |d 2022-11-15 |
915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2022-11-15 |
915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |d 2022-11-15 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2022-11-15 |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |d 2022-11-15 |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2022-11-15 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2022-11-15 |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |d 2022-11-15 |w ger |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2022-11-15 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-3-20200312 |k IBI-3 |l Bioelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBI-3-20200312 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|