001005248 001__ 1005248
001005248 005__ 20231027114356.0
001005248 0247_ $$2doi$$a10.1007/s00339-023-06478-4
001005248 0247_ $$2ISSN$$a0340-3793
001005248 0247_ $$2ISSN$$a0947-8396
001005248 0247_ $$2ISSN$$a0721-7250
001005248 0247_ $$2ISSN$$a1432-0630
001005248 0247_ $$2Handle$$a2128/34060
001005248 0247_ $$2WOS$$aWOS:000942780100003
001005248 037__ $$aFZJ-2023-01387
001005248 082__ $$a530
001005248 1001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b0$$eCorresponding author
001005248 245__ $$aSi–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics
001005248 260__ $$aNew York$$bSpringer$$c2023
001005248 3367_ $$2DRIVER$$aarticle
001005248 3367_ $$2DataCite$$aOutput Types/Journal article
001005248 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677847803_489
001005248 3367_ $$2BibTeX$$aARTICLE
001005248 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005248 3367_ $$00$$2EndNote$$aJournal Article
001005248 520__ $$aSi–Ge–Sn alloys are offering unusual material properties with a strong potential to add a variety of functionalities to advanced CMOS technology. Being a group IV alloy, SiGeSn can be monolithically integrated on Si. The discovery of a direct band gap at Sn concentration above 8%, the extremely small effective mass for electrons and holes as well as the pronounced phonon scattering are opening new opportunities for Si photonics, high frequency devices and thermoelectrics. Si–Ge–Sn alloys with Sn concentration far beyond the solid solubility limit are metastable, artificial materials, which request challenging growth conditions. In this paper the epitaxial conditions for Si–Ge–Sn alloys to achieve precise control of the Sn content, to manage the lattice mismatch and defects, as well as to fabricate doped layers are discussed. The applied process control allows for epitaxy of group-IV heterostructures, required for typical devices for photonic and electronic applications. In this context, lasers and nanowires MOSFETs are discussed in this paper. In additions, the thermal conductivity is investigated as a critical material parameter to obtain a high thermoelectric figure of merit in GeSn alloys.
001005248 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001005248 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005248 7001_ $$0P:(DE-Juel1)188576$$aConcepción Díaz, Omar$$b1$$ufzj
001005248 7001_ $$0P:(DE-Juel1)128649$$aZhao, Q.-T.$$b2$$ufzj
001005248 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b3$$ufzj
001005248 773__ $$0PERI:(DE-600)1398311-8$$a10.1007/s00339-023-06478-4$$gVol. 129, no. 3, p. 235$$n3$$p235$$tApplied physics / A$$v129$$x0340-3793$$y2023
001005248 8564_ $$uhttps://juser.fz-juelich.de/record/1005248/files/s00339-023-06478-4.pdf$$yOpenAccess
001005248 8767_ $$d2023-09-08$$eHybrid-OA$$jDEAL
001005248 909CO $$ooai:juser.fz-juelich.de:1005248$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001005248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b0$$kFZJ
001005248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188576$$aForschungszentrum Jülich$$b1$$kFZJ
001005248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b2$$kFZJ
001005248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b3$$kFZJ
001005248 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001005248 9141_ $$y2023
001005248 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005248 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001005248 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001005248 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001005248 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001005248 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-15
001005248 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005248 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001005248 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-15$$wger
001005248 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005248 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001005248 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS A-MATER : 2022$$d2023-10-21
001005248 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001005248 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001005248 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001005248 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001005248 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001005248 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001005248 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
001005248 920__ $$lyes
001005248 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001005248 9801_ $$aFullTexts
001005248 980__ $$ajournal
001005248 980__ $$aVDB
001005248 980__ $$aUNRESTRICTED
001005248 980__ $$aI:(DE-Juel1)PGI-9-20110106
001005248 980__ $$aAPC