001005301 001__ 1005301
001005301 005__ 20231027114357.0
001005301 0247_ $$2doi$$a10.1002/adfm.202214854
001005301 0247_ $$2ISSN$$a1616-301X
001005301 0247_ $$2ISSN$$a1057-9257
001005301 0247_ $$2ISSN$$a1099-0712
001005301 0247_ $$2ISSN$$a1616-3028
001005301 0247_ $$2Handle$$a2128/34423
001005301 0247_ $$2WOS$$aWOS:000922359400001
001005301 037__ $$aFZJ-2023-01413
001005301 041__ $$aEnglish
001005301 082__ $$a530
001005301 1001_ $$0P:(DE-HGF)0$$aHu, Lipeng$$b0
001005301 245__ $$aIn situ Design of High-Performance Dual Phase GeSe Thermoelectrics by Tailoring Chemical Bonds
001005301 260__ $$aWeinheim$$bWiley-VCH$$c2023
001005301 3367_ $$2DRIVER$$aarticle
001005301 3367_ $$2DataCite$$aOutput Types/Journal article
001005301 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684224352_1638
001005301 3367_ $$2BibTeX$$aARTICLE
001005301 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005301 3367_ $$00$$2EndNote$$aJournal Article
001005301 520__ $$aComposite engineering favors high thermoelectric performance by tuning the carrier and phonon transport. Herein, orthorhombic and rhombohedral dual-phase GeSe are designed in situ by tailoring chemical bonds. Atom probe tomography verifies the coexistence of a covalently bonded orthorhombic phase and a metavalently bonded rhombohedral phase in GeSe-InTe alloys. The production of the rhombohedral phase simultaneously increases the carrier concentration, the carrier mobility, the band degeneracy, and the density-of-states effective mass due to the reduced formation energy of cation vacancies and the improved crystal symmetry. These attributes are beneficial to a high-power factor. In addition, the thermal conductivity can be significantly reduced due to the intrinsically strong lattice anharmonicity of the metavalently bonded phase, the interfacial acoustic phonon mismatch across different bonding mechanisms, and the phonon scattering at vacancy-solute clusters. Moreover, the metavalently bonded phase embraces higher solubility of dopants that enables the further optimization of properties by Cd-Ag doping, resulting in a zT of 0.95 at 773 K as well as enhanced strength and ductility in dual-phase Ge0.94Cd0.03Ag0.03Se(InTe)0.15. This work indicates that in situ design of dual-phase composites by tailoring chemical bonds is an effective method for enhancing the thermoelectric and mechanical properties of GeSe and other p-bonded chalcogenides.
001005301 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001005301 588__ $$aDataset connected to DataCite
001005301 7001_ $$0P:(DE-HGF)0$$aDuan, Bingcai$$b1
001005301 7001_ $$0P:(DE-HGF)0$$aLyu, Tu$$b2
001005301 7001_ $$0P:(DE-HGF)0$$aLin, Nan$$b3
001005301 7001_ $$0P:(DE-HGF)0$$aZhang, Chaohua$$b4
001005301 7001_ $$0P:(DE-HGF)0$$aLiu, Fusheng$$b5
001005301 7001_ $$0P:(DE-HGF)0$$aLi, Junqin$$b6
001005301 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b7
001005301 7001_ $$00000-0002-3148-6600$$aYu, Yuan$$b8$$eCorresponding author
001005301 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202214854$$gp. 2214854 -$$n17$$p2214854 -2214866$$tAdvanced functional materials$$v33$$x1616-301X$$y2023
001005301 8564_ $$uhttps://juser.fz-juelich.de/record/1005301/files/Adv%20Funct%20Materials%20-%202023%20-%20Hu%20-%20In%20Situ%20Design%20of%20High%E2%80%90Performance%20Dual%E2%80%90Phase%20GeSe%20Thermoelectrics%20by%20Tailoring%20Chemical.pdf$$yOpenAccess
001005301 909CO $$ooai:juser.fz-juelich.de:1005301$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b7$$kFZJ
001005301 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001005301 9141_ $$y2023
001005301 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001005301 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-15
001005301 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005301 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-15$$wger
001005301 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001005301 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005301 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001005301 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001005301 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001005301 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001005301 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-24
001005301 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-24
001005301 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2022$$d2023-10-24
001005301 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
001005301 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
001005301 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2022$$d2023-10-24
001005301 920__ $$lyes
001005301 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
001005301 980__ $$ajournal
001005301 980__ $$aVDB
001005301 980__ $$aUNRESTRICTED
001005301 980__ $$aI:(DE-Juel1)PGI-10-20170113
001005301 9801_ $$aFullTexts