Journal Article FZJ-2023-01413

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
In situ Design of High-Performance Dual Phase GeSe Thermoelectrics by Tailoring Chemical Bonds

 ;  ;  ;  ;  ;  ;  ;  ;

2023
Wiley-VCH Weinheim

Advanced functional materials 33(17), 2214854 -2214866 () [10.1002/adfm.202214854]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Composite engineering favors high thermoelectric performance by tuning the carrier and phonon transport. Herein, orthorhombic and rhombohedral dual-phase GeSe are designed in situ by tailoring chemical bonds. Atom probe tomography verifies the coexistence of a covalently bonded orthorhombic phase and a metavalently bonded rhombohedral phase in GeSe-InTe alloys. The production of the rhombohedral phase simultaneously increases the carrier concentration, the carrier mobility, the band degeneracy, and the density-of-states effective mass due to the reduced formation energy of cation vacancies and the improved crystal symmetry. These attributes are beneficial to a high-power factor. In addition, the thermal conductivity can be significantly reduced due to the intrinsically strong lattice anharmonicity of the metavalently bonded phase, the interfacial acoustic phonon mismatch across different bonding mechanisms, and the phonon scattering at vacancy-solute clusters. Moreover, the metavalently bonded phase embraces higher solubility of dopants that enables the further optimization of properties by Cd-Ag doping, resulting in a zT of 0.95 at 773 K as well as enhanced strength and ductility in dual-phase Ge0.94Cd0.03Ag0.03Se(InTe)0.15. This work indicates that in situ design of dual-phase composites by tailoring chemical bonds is an effective method for enhancing the thermoelectric and mechanical properties of GeSe and other p-bonded chalcogenides.

Classification:

Contributing Institute(s):
  1. JARA Institut Green IT (PGI-10)
Research Program(s):
  1. 5233 - Memristive Materials and Devices (POF4-523) (POF4-523)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 15 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-10
Workflow collections > Public records
Publications database
Open Access

 Record created 2023-03-08, last modified 2023-10-27


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)