001     1005318
005     20250203103444.0
024 7 _ |a 10.1016/j.est.2023.106681
|2 doi
024 7 _ |a 2352-152X
|2 ISSN
024 7 _ |a 2352-1538
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-01427
|2 datacite_doi
024 7 _ |a WOS:000925365900001
|2 WOS
037 _ _ |a FZJ-2023-01427
082 _ _ |a 333.7
100 1 _ |a Frambach, Tobias
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Battery sizing of 48 V plug-in hybrids considering calendar and cycle degradation
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712737041_24402
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plug-in hybrid electric vehicles (PHEVs) with battery packs tailored to the driving use case can help to reduce the environmental footprint of the transportation sector. Compared to common high-voltage systems, PHEVs based on a low-voltage level show a higher fuel consumption, but in return benefit from lower component costs and allow the utilization of cheaper high-energy cells. In this paper, the battery size of a 48 V PHEV concept is optimized to minimize the operational costs while taking battery degradation into account and ensure a lifetime-robust system layout. To investigate the applicability of high-energy batteries, 31 automotive-grade cells were investigated experimentally in a calendar and cycle aging study. The results show that calendar aging has a significant contribution of 17.5 % to the overall capacity loss and should be considered during the battery design process. The cycle degradation model is integrated in a Dynamic Programming simulation environment with various real-driving speed and slope profiles, which are extracted from a measured year-round driving profile. The simulation results show, that considering the degradation in the energy management strategy reduces the capacity loss but results in higher operational costs throughout the vehicle lifetime. The extension of a mild hybrid vehicle to a PHEV can reduce the operational costs by 18.5 %. If the vehicle is not charged, the costs increase by 6 % highlighting the need for frequent charging of PHEVs.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liedtke, Ralf
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Figgemeier, Egbert
|0 P:(DE-Juel1)165182
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.est.2023.106681
|g Vol. 60, p. 106681 -
|0 PERI:(DE-600)2826805-2
|p 106681 -
|t Journal of energy storage
|v 60
|y 2023
|x 2352-152X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1005318/files/Battery%20sizing%20of%2048%20V%20plug-in%20hybrids%20considering%20calendar%20and%20cycle%20degradation.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1005318/files/Battery%20sizing%20of%2048%20V%20plug-in%20hybrids%20considering%20calendar%20and%20cycle%20degradation.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1005318/files/Battery%20sizing%20of%2048%20V%20plug-in%20hybrids%20considering%20calendar%20and%20cycle%20degradation.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1005318/files/Battery%20sizing%20of%2048%20V%20plug-in%20hybrids%20considering%20calendar%20and%20cycle%20degradation.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1005318/files/Battery%20sizing%20of%2048%20V%20plug-in%20hybrids%20considering%20calendar%20and%20cycle%20degradation.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1005318
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165182
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ENERGY STORAGE : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J ENERGY STORAGE : 2022
|d 2023-10-26
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21