001     1005435
005     20250129092450.0
024 7 _ |a 10.1109/TQE.2023.3255743
|2 doi
024 7 _ |a 2128/34437
|2 Handle
024 7 _ |a WOS:001363356900001
|2 WOS
037 _ _ |a FZJ-2023-01472
041 _ _ |a English
082 _ _ |a 621.3
100 1 _ |a Hader, Fabian
|0 P:(DE-Juel1)170099
|b 0
|e Corresponding author
245 _ _ |a On Noise-Sensitive Automatic Tuning of Gate-Defined Sensor Dots
260 _ _ |a New York, NY
|c 2023
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1687431339_4327
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In gate-defined quantum dot systems, the conductance change of electrostatically coupled sensor dots allows the observation of the quantum dots' charge and spin states. Therefore, the sensor dots must be optimally sensitive to changes in its electrostatic environment. A series of conductance measurements varying the two sensor-dot-forming barrier gate voltages serve to tune the dot into a corresponding operating regime. In this paper, we analyze the noise characteristics of the measured data and define a criterion to identify continuous regions with a sufficient signal-gradient-to-noise ratio. Hence, accurate noise estimation is required when identifying the optimal operating regime. Therefore, we evaluate several existing noise estimators, modify them for 1D data, optimize their parameters, and analyze their quality based on simulated data. The estimator of Chen et al. [1] turns out to be best suited for our application concerning minimally scattering results. Furthermore, using this estimator in an algorithm for flank-of-interest classification in measured data shows the relevance and applicability of our approach.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Vogelbruch, Jan
|0 P:(DE-Juel1)133952
|b 1
700 1 _ |a Humpohl, Simon
|0 P:(DE-Juel1)172767
|b 2
700 1 _ |a Hangleiter, Tobias
|0 0000-0002-5177-6162
|b 3
700 1 _ |a Eguzo, Chimezie
|0 P:(DE-Juel1)180232
|b 4
700 1 _ |a Heinen, Stefan
|0 P:(DE-Juel1)180765
|b 5
700 1 _ |a Meyer, Stefanie
|0 P:(DE-Juel1)7756
|b 6
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 7
773 _ _ |a 10.1109/TQE.2023.3255743
|g p. 1 - 19
|0 PERI:(DE-600)3035782-2
|p 5500218
|t IEEE transactions on quantum engineering
|v 4
|y 2023
|x 2689-1808
856 4 _ |u https://juser.fz-juelich.de/record/1005435/files/On_Noise-Sensitive_Automatic_Tuning_of_Gate-Defined_Sensor_Dots-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005435
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)170099
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172767
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 0000-0002-5177-6162
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180232
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)180765
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)7756
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 1
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:53:35Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:53:35Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:53:35Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21