001005447 001__ 1005447
001005447 005__ 20240712113153.0
001005447 0247_ $$2doi$$a10.1021/jacsau.2c00662
001005447 0247_ $$2Handle$$a2128/34390
001005447 0247_ $$2pmid$$a37124300
001005447 0247_ $$2WOS$$aWOS:000978886200001
001005447 037__ $$aFZJ-2023-01478
001005447 082__ $$a540
001005447 1001_ $$0P:(DE-Juel1)180589$$aZhu, Xinwei$$b0
001005447 245__ $$apH Effects in a Model Electrocatalytic Reaction Disentangled
001005447 260__ $$aWashington, DC$$bACS Publications$$c2023
001005447 3367_ $$2DRIVER$$aarticle
001005447 3367_ $$2DataCite$$aOutput Types/Journal article
001005447 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707830467_14049
001005447 3367_ $$2BibTeX$$aARTICLE
001005447 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005447 3367_ $$00$$2EndNote$$aJournal Article
001005447 520__ $$aVarying the solution pH not only changes the reactant concentrations in bulk solution but also the local reaction environment (LRE) that is shaped furthermore by macroscopic mass transport and microscopic electric double layer (EDL) effects. Understanding ubiquitous pH effects in electrocatalysis requires disentangling these interwoven factors, which is a difficult, if not impossible, task without physical modeling. Herein, we demonstrate how a hierarchical model that integrates microkinetics, double-layer charging, and macroscopic mass transport can help understand pH effects of the formic acid oxidation reaction (FAOR). In terms of the relation between the peak activity and the solution pH, intrinsic pH effects without consideration of changes in the LRE would lead to a bell-shaped curve with a peak at pH = 6. Adding only macroscopic mass transport, we can already reproduce qualitatively the experimentally observed trapezoidal shape with a plateau between pH 5 and 10 in perchlorate and sulfate solutions. A quantitative agreement with experimental data requires consideration of EDL effects beyond Frumkin correlations. Specifically, the peculiar nonmonotonic surface charging relation affects the free energies of adsorbed intermediates. We further discuss pH effects of FAOR in phosphate and chloride-containing solutions, for which anion adsorption becomes important. This study underpins the importance of a full consideration of multiple interrelated factors for the interpretation of pH effects in electrocatalysis.
001005447 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001005447 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x1
001005447 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005447 7001_ $$0P:(DE-Juel1)192568$$aHuang, Jun$$b1
001005447 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b2$$eCorresponding author
001005447 773__ $$0PERI:(DE-600)3049543-X$$a10.1021/jacsau.2c00662$$gp. jacsau.2c00662$$n4$$p1052–1064$$tJACS Au$$v3$$x2691-3704$$y2023
001005447 8564_ $$uhttps://juser.fz-juelich.de/record/1005447/files/jacsau.2c00662.pdf$$yOpenAccess
001005447 8767_ $$d2023-03-14$$eAPC$$jPublish and Read
001005447 909CO $$ooai:juser.fz-juelich.de:1005447$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001005447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180589$$aForschungszentrum Jülich$$b0$$kFZJ
001005447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192568$$aForschungszentrum Jülich$$b1$$kFZJ
001005447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b2$$kFZJ
001005447 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001005447 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x1
001005447 9141_ $$y2023
001005447 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005447 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001005447 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005447 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-18
001005447 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005447 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-18
001005447 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJACS AU : 2022$$d2023-08-25
001005447 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001005447 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001005447 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25
001005447 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-18T10:11:29Z
001005447 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-18T10:11:29Z
001005447 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-18T10:11:29Z
001005447 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001005447 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-25
001005447 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001005447 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJACS AU : 2022$$d2023-08-25
001005447 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001005447 9801_ $$aAPC
001005447 9801_ $$aFullTexts
001005447 980__ $$ajournal
001005447 980__ $$aVDB
001005447 980__ $$aI:(DE-Juel1)IEK-13-20190226
001005447 980__ $$aAPC
001005447 980__ $$aUNRESTRICTED
001005447 981__ $$aI:(DE-Juel1)IET-3-20190226